Аноним

Приближенные решения для биматричного равновесия Нэша: различия между версиями

Материал из WEGA
нет описания правки
Нет описания правки
Строка 52: Строка 52:


Две независимых последовательных работы [6] и [10] впервые продемонстрировали прогресс в нахождении <math>\epsilon \, </math>-равновесия Нэша и <math>\epsilon \, </math>-поддерживаемого равновесия Нэша для биматричных игр и некоторого ''константного'' <math>0 < \epsilon < 1 \, </math>. В частности, в работе Контогианниса, Панагопулу и Спиракиса [10] был предложен простой линейный алгоритм для вычисления 3/4-равновесия Нэша для любой биматричной игры:
Две независимых последовательных работы [6] и [10] впервые продемонстрировали прогресс в нахождении <math>\epsilon \, </math>-равновесия Нэша и <math>\epsilon \, </math>-поддерживаемого равновесия Нэша для биматричных игр и некоторого ''константного'' <math>0 < \epsilon < 1 \, </math>. В частности, в работе Контогианниса, Панагопулу и Спиракиса [10] был предложен простой линейный алгоритм для вычисления 3/4-равновесия Нэша для любой биматричной игры:


'''Теорема 3''' ([10])
'''Теорема 3''' ([10])
Строка 59: Строка 60:


Вышеприведенная техника может быть расширена таким образом, чтобы получить более строгое, параметризованное приближение:
Вышеприведенная техника может быть расширена таким образом, чтобы получить более строгое, параметризованное приближение:


'''Теорема 4''' ([10])
'''Теорема 4''' ([10])
Строка 68: Строка 70:


Выбрать произвольную строку для игрока по строкам, к примеру, строку i. Пусть <math>j = arg\;max_{j\prime}\,b_{ij\prime} \, </math>. Пусть <math>k = arg\;max_{k\prime}\,a_{k\prime j} \, </math>. Таким образом, j – это столбец с лучшим ответом для игрока по столбцам в строке i, а k – строка с лучшим ответом для игрока по строкам в столбце j. Пусть <math>\mathbf{\hat{x}} = 1/2 \mathbf{e_i} + 1/2 \mathbf{e_k}</math> и <math>\mathbf{\hat{y}} = \mathbf{e_j}</math>, т.е. игрок по строкам играет строку i или строку k с вероятностью 1/2 для каждой, тогда как игрок по столбцам играет столбец j с вероятностью 1. Тогда верна
Выбрать произвольную строку для игрока по строкам, к примеру, строку i. Пусть <math>j = arg\;max_{j\prime}\,b_{ij\prime} \, </math>. Пусть <math>k = arg\;max_{k\prime}\,a_{k\prime j} \, </math>. Таким образом, j – это столбец с лучшим ответом для игрока по столбцам в строке i, а k – строка с лучшим ответом для игрока по строкам в столбце j. Пусть <math>\mathbf{\hat{x}} = 1/2 \mathbf{e_i} + 1/2 \mathbf{e_k}</math> и <math>\mathbf{\hat{y}} = \mathbf{e_j}</math>, т.е. игрок по строкам играет строку i или строку k с вероятностью 1/2 для каждой, тогда как игрок по столбцам играет столбец j с вероятностью 1. Тогда верна


'''Теорема 5''' ([6])
'''Теорема 5''' ([6])
Строка 93: Строка 96:


'''Для любых биматричных игр возможно построить <math>( \sqrt{11} /2 - 1 )</math>-поддерживаемое равновесие Нэша за полиномиальное время.'''
'''Для любых биматричных игр возможно построить <math>( \sqrt{11} /2 - 1 )</math>-поддерживаемое равновесие Нэша за полиномиальное время.'''


Два недавних результата улучшили статус приближения <math>\epsilon \, </math>-равновесия Нэша:
Два недавних результата улучшили статус приближения <math>\epsilon \, </math>-равновесия Нэша:
Строка 109: Строка 113:
'''Существует алгоритм с полиномиальным временем, основанный на нахождении неподвижных точек в естественной задаче оптимизации, который строит 0.3393-равновесие Нэша.'''
'''Существует алгоритм с полиномиальным временем, основанный на нахождении неподвижных точек в естественной задаче оптимизации, который строит 0.3393-равновесие Нэша.'''


Каннан и Теобальд [9] исследовали иерархию биматричных игры <math>\langle A, B \rangle </math>, получаемую из ограничения ранга матрицы <big>''А + В''</big> до фиксированного ранга, не превышающего <math>k</math>. Они предложили новую модель <math>\epsilon \, </math>-аппроксимации для игр ранга <math>k</math> и, используя результаты квадратичной оптимизации, показали, что приближенные равновесия Нэша для игр с константным рангом могут быть вычислены детерминированным образом за время, полиномиальное относительно 1/<math>\epsilon \, </math>. Кроме того, в [9] представлен рандомизированный алгоритм приближения для определенных задач квадратичной оптимизации, что позволяет создать рандомизированный алгоритм приближения для задачи нахождения равновесия Нэша. Этот рандомизированный алгоритм имеет практически ту же временную сложность, что и детерминированный, однако при условии истинности предположения позволяет найти точное решение за полиномиальное время. Наконец, эти же авторы предложили алгоритм с полиномиальным временем для относительного приближения (касающегося выигрышей при равновесии) для случая, когда матрица <big>''A + B''</big> имеет неотрицательную декомпозицию.
 
Каннан и Теобальд [9] исследовали иерархию биматричных игр <math>\langle A, B \rangle </math>, получаемую из ограничения ранга матрицы <big>А + В</big> до фиксированного ранга, не превышающего k. Они предложили новую модель <math>\epsilon \, </math>-аппроксимации для игр ранга k и, используя результаты квадратичной оптимизации, показали, что приближенные равновесия Нэша для игр с константным рангом могут быть вычислены детерминированным образом за время, полиномиальное относительно 1/<math>\epsilon \, </math>. Кроме того, в [9] представлен рандомизированный алгоритм приближения для определенных задач квадратичной оптимизации, что позволяет создать рандомизированный алгоритм приближения для задачи нахождения равновесия Нэша. Этот рандомизированный алгоритм имеет практически ту же временную сложность, что и детерминированный, однако при условии истинности предположения позволяет найти точное решение за полиномиальное время. Наконец, эти же авторы предложили алгоритм с полиномиальным временем для ''относительного приближения'' (касающегося выигрышей при равновесии) для случая, когда матрица <big>A + B</big> имеет неотрицательную декомпозицию.


== Применение ==
== Применение ==
4430

правок