Аноним

Приближенные решения для биматричного равновесия Нэша: различия между версиями

Материал из WEGA
Строка 44: Строка 44:
В результате этого получаем квазиполиномиальный алгоритм (<big>n<sup>O(ln n)</sup></big>) для вычисления приближенного равновесия. Более того, как было отмечено в [1], ни один алгоритм, исследующий поддержку менее чем за время ln n, не может достичь лучшего приближения, чем 1/4.
В результате этого получаем квазиполиномиальный алгоритм (<big>n<sup>O(ln n)</sup></big>) для вычисления приближенного равновесия. Более того, как было отмечено в [1], ни один алгоритм, исследующий поддержку менее чем за время ln n, не может достичь лучшего приближения, чем 1/4.


===Теорема 2 ===
'''Теорема 2''' ([4])
[4]<big>''Задача вычисления <math>1/n \Theta ^{(1)}</math>-равновесия Нэша для биматричной игры с матрицами n × n является PPAD-полной.''</big>
 
'''Задача вычисления <math>1/n^{\Theta (1)} \, </math>-равновесия Нэша для биматричной игры с матрицами <math>n \times n</math> является PPAD-полной.'''
 


Теорема 2 утверждает, что за исключением случаев, когда PPAD <math>\subseteq</math> P, не существует схемы аппроксимации с полностью полиномиальным временем исполнения для вычисления равновесия в биматричных играх. Однако это не исключает существования схемы аппроксимации с полиномиальным временем для вычисления <math>\epsilon \, </math>-равновесия Нэша, где <math>\epsilon \, </math> является абсолютной константой, и даже в случае <math>\epsilon \,  = \Theta \big( 1/poly(ln n) \big). </math>Более того, как было замечено в [4], если бы задача нахождения <math>\epsilon \, </math>-равновесия Нэша была PPAD-полной в случае, когда <math>\epsilon \, </math> является абсолютной константой, то, согласно Теореме 1, все PPAD-полные задачи были бы разрешимы за квазиполиномиальное время, что едва ли соответствует истине.
Теорема 2 утверждает, что за исключением случаев, когда PPAD <math>\subseteq</math> P, не существует схемы аппроксимации с полностью полиномиальным временем исполнения для вычисления равновесия в биматричных играх. Однако это не исключает существования схемы аппроксимации с полиномиальным временем для вычисления <math>\epsilon \, </math>-равновесия Нэша, где <math>\epsilon \, </math> является абсолютной константой, и даже в случае <math>\epsilon \,  = \Theta \big( 1/poly(ln n) \big). </math>Более того, как было замечено в [4], если бы задача нахождения <math>\epsilon \, </math>-равновесия Нэша была PPAD-полной в случае, когда <math>\epsilon \, </math> является абсолютной константой, то, согласно Теореме 1, все PPAD-полные задачи были бы разрешимы за квазиполиномиальное время, что едва ли соответствует истине.


Две независимых последовательных работы [6] и [10] впервые продемонстрировали прогресс в нахождении <math>\epsilon \, </math>-равновесия Нэша и <math>\epsilon \, </math>-поддерживаемого равновесия Нэша для биматричных игр и некоторого константного <big>0 < <math>\epsilon \, </math> < 1</big>. В частности, в работе Контогианниса, Панагопулу и Спиракиса [10] был предложен простой линейный алгоритм для вычисления 3/4-равновесия Нэша для любой биматричной игры:
Две независимых последовательных работы [6] и [10] впервые продемонстрировали прогресс в нахождении <math>\epsilon \, </math>-равновесия Нэша и <math>\epsilon \, </math>-поддерживаемого равновесия Нэша для биматричных игр и некоторого ''константного'' <math>0 < \epsilon < 1 \, </math>. В частности, в работе Контогианниса, Панагопулу и Спиракиса [10] был предложен простой линейный алгоритм для вычисления 3/4-равновесия Нэша для любой биматричной игры:


===Теорема 3 ===
===Теорема 3 ===
4430

правок