Аноним

Отказоустойчивые квантовые вычисления: различия между версиями

Материал из WEGA
м
 
(не показано 6 промежуточных версий этого же участника)
Строка 21: Строка 21:


== Основные результаты ==
== Основные результаты ==
Важнейшим результатом в концепции отказоустойчивости является наличие ''порога'' шума для определенных моделей шума и вычислительных моделей.
Важнейшим фактором в концепции отказоустойчивости является наличие ''порога'' шума для определенных моделей шума и вычислительных моделей.
   
   


Порог шума представляет собой положительный константный коэффициент шума (или набор параметров модели), такой, что в случае, когда уровень шума ниже этого коэффициента, достоверное вычисление оказывается возможным. Иначе говоря, если имеется квантовая схема без входов С из идеальных вентилей, то существует «имитирующая» ее схема FTC неисправных затворов, такая, что с вероятностью, скажем, не менее 2/3 измеренный выход С согласуется с выходом FTC. Кроме того, FTC должна превышать C не более чем полиномиально.
Порог шума представляет собой положительный константный коэффициент шума (или набор параметров модели), такой, что в случае, когда уровень шума ниже этого коэффициента, достоверное вычисление оказывается возможным. Иначе говоря, если имеется квантовая схема без входов С из идеальных вентилей, то существует «имитирующая» ее схема FTC неисправных вентилей, такая, что с вероятностью, скажем, не менее 2/3 измеренный выход С согласуется с выходом FTC. Кроме того, FTC должна превышать C не более чем полиномиально.




Квантовая схема с N вентилями может априори допускать только O(1/N) ошибок на один вентиль, поскольку всего один отказ может привести к рандомизации всей выдачи. В 1996 году Шор показал, как можно справиться с O(1/poly(log N)) ошибками на один вентиль, закодировав каждый кубит в poly(log N)-размерный квантовый код коррекции ошибок, а затем реализуя каждый вентиль желаемой схемы непосредственно на закодированных кубитах, чередуя вычисления и шаги исправления ошибок (это напоминает схему фон Неймана) [8]. Результат Шора состоит из двух основных технических частей:
Квантовая схема с N вентилями может априори допускать только O(1/N) ошибок на один вентиль, поскольку всего один отказ может привести к рандомизации всей выдачи. В 1996 году Шор показал, как можно справиться с O(1/poly(log N)) ошибками на один вентиль, закодировав каждый кубит в poly(log N)-размерный квантовый код коррекции ошибок, а затем реализуя каждый вентиль желаемой схемы непосредственно на закодированных кубитах, чередуя вычисления и шаги исправления ошибок (это напоминает схему фон Неймана) [8]. Результат Шора состоит из двух основных технических частей:


1. Серьезным результатом было открытие кодов квантовой коррекции ошибок (QECC). Примечательно, что несмотря на то, что квантовые ошибки могут быть непрерывными, кодов, которые исправляют дискретные ошибки, оказывается достаточно. (Измерение синдрома блока кода превращается в дискретное событие об ошибке). Первым квантовым кодом, обнаруженным Шором, был 9-кубитный код, состоящий из конкатенации трехкубитного кода <math>| 0 \rangle \mapsto | 000 \rangle, | 1 \rangle \mapsto | 111 \rangle</math> для защиты от ошибок инвертирования разряда, тогда как его дуальный код <math>| + \rangle \mapsto | + + + \rangle, | - \rangle \mapsto | - - - \rangle </math> обеспечивал защиту от ошибок инвертирования фазы. С тех пор было обнаружено много других QECC. Такие коды, как 9-кубитный код, способный исправлять ошибки разряда и фазы по отдельности, известны как коды Калдербанка-Шора-Стина (Calderbank-Shor-Steane, CSS) и имеют квантовые кодовые слова, которые одновременно являются суперпозициями кодовых слов классических кодов в базах <math> | 0 / 1 \rangle</math> и <math> | + / - \rangle</math>.
1. Серьезным результатом было открытие кодов квантовой коррекции ошибок (QECC). Примечательно, что несмотря на то, что квантовые ошибки могут быть непрерывными, кодов, которые исправляют дискретные ошибки, оказывается достаточно. (Измерение синдрома блока кода превращается в дискретное событие об ошибке). Первым квантовым кодом, обнаруженным Шором, был 9-кубитный код, состоящий из конкатенации трехкубитного кода с повторениями <math>| 0 \rangle \mapsto | 000 \rangle, | 1 \rangle \mapsto | 111 \rangle</math> для защиты от ошибок инвертирования разряда, тогда как его дуальный код <math>| + \rangle \mapsto | + + + \rangle, | - \rangle \mapsto | - - - \rangle </math> обеспечивал защиту от ошибок инвертирования фазы. С тех пор было обнаружено много других QECC. Такие коды, как 9-кубитный код, способные исправлять ошибки разряда и фазы по отдельности, известны как коды Калдербанка-Шора-Стина (Calderbank-Shor-Steane, CSS) и имеют квантовые кодовые слова, которые одновременно являются суперпозициями кодовых слов классических кодов в базах <math> | 0 / 1 \rangle</math> и <math> | + / - \rangle</math>.


2. Коды QECC позволяют использовать квантовую память или общаться по шумному каналу. Для вычисления, однако, должна быть возможность расчета на основе кодирования последовательности состояний в отсутствие первичного декодирования. Операция считается ''отказоустойчивой'', если она не может привести к коррелированным ошибкам внутри блока кода. При наличии n-битного мажоритарного кода все классические вентили могут быть применены ''перпендикулярно'': закодированный вентиль можно реализовать посредством применения незакодированного вентиля к битам i каждого блока кода, <math>1 \le i \le n</math>. Эта операция является отказоустойчивой, так как один отказ влияет не более чем на один бит в каждом блоке и, таким образом, отказы не могут распространяться слишком быстро. Для квантовых кодов CSS вентиль с контролируемым отрицанием CNOT: <math> | a, b \rangle \mapsto | a, a \oplus b \rangle</math> может применяться перпендикулярно аналогичным образом. Однако сам по себе вентиль CNOT не является универсальным, поэтому Шор также предложил отказоустойчивую реализацию вентиля Тоффоли <math> | a, b, c \rangle \mapsto | a, b, c \oplus (a \wedge b) \rangle</math>. Как для коррекции ошибок при использовании неисправных вентилей, так и для начального этапа подготовки требуются дополнительные процедуры. Кодирование <math> | 0 \rangle</math> представляет сильно запутанное состояние и трудно для подготовки (в отличие от <math>0^n</math> для классического мажоритарного кода).
2. Коды QECC позволяют использовать квантовую память или общаться по шумному каналу. Для вычисления, однако, должна иметь место возможность расчета на основе закодированных состояний в отсутствие первичного декодирования. Операция считается ''отказоустойчивой'', если она не может привести к коррелированным ошибкам внутри блока кода. При наличии n-битного мажоритарного кода все классические вентили могут быть применены ''перпендикулярно'': закодированный вентиль можно реализовать посредством применения незакодированного вентиля к битам i каждого блока кода, <math>1 \le i \le n</math>. Эта операция является отказоустойчивой, так как один отказ влияет не более чем на один бит в каждом блоке и, таким образом, отказы не могут распространяться слишком быстро. Для квантовых кодов CSS вентиль с контролируемым отрицанием CNOT: <math> | a, b \rangle \mapsto | a, a \oplus b \rangle</math> может применяться перпендикулярно аналогичным образом. Однако сам по себе вентиль CNOT не является универсальным, поэтому Шор также предложил отказоустойчивую реализацию вентиля Тоффоли <math> | a, b, c \rangle \mapsto | a, b, c \oplus (a \wedge b) \rangle</math>. Как для коррекции ошибок при использовании неисправных вентилей, так и для начального этапа подготовки требуются дополнительные процедуры. Кодирование <math> | 0 \rangle</math> представляет сильно запутанное состояние и трудно для подготовки (в отличие от <math>0^n</math> для классического мажоритарного кода).




Строка 42: Строка 42:
В целом с тех пор был достигнут прогресс по двум направлениям задачи об отказоустойчивости:
В целом с тех пор был достигнут прогресс по двум направлениям задачи об отказоустойчивости:


1. Во-первых, была продолжена работа по расширению набора моделей шума и вычислительных моделей, для которых известно существование порога отказоустойчивости. Например, коррелированный или даже враждебный шум, ошибки утечки (когда кубит выходит из подпространства <math> | 0 \rangle, | 1 \rangle</math> и немарковский шум (в этом случае окружение обладает памятью) – все это оказалось допустимым в теории, даже при наличии только локальных вентилей.
1. Во-первых, была продолжена работа по расширению набора моделей шума и вычислительных моделей, для которых известно существование порога отказоустойчивости. Например, коррелированный или даже враждебный шум, ошибки утечки (когда кубит выходит из подпространства <math> | 0 \rangle, | 1 \rangle</math>) и немарковский шум (в этом случае окружение обладает памятью) – все это оказалось допустимым в теории, даже при наличии только локальных вентилей.


2. Доказательства существования порогов устанавливают, что построение рабочего квантового компьютера возможно ''в принципе''. Физикам необходимо только разработать квантовые системы с достаточно низким константным уровнем шума. Но для реализации потенциала квантового компьютера потребуются ''практические'' схемы отказоустойчивости. Схемы должны будут выдерживать высокий уровень шума (а не просто константный) и добиваться этой цели с низкими накладными расходами (а не просто полилогарифмическими). Однако грубые оценки допустимого уровня шума согласно исходным доказательствам существования не являются многообещающими – необходим уровень ниже <math>10^{-6}</math> на вентиль. Если истинный порог составляет всего <math>10^{-6}</math>, то построить квантовый компьютер будет практически невозможно. Поэтому, во-вторых, была проведена значительная работа по оптимизации схем отказоустойчивости – главным образом с целью повышения допустимого уровня шума. Такие оптимизации обычно оцениваются с помощью симуляций и эвристических аналитических моделей. Однако недавно Алиферис, Готтесман и Прескилл разработали метод доказательства достаточно хороших нижних границ порога, до <math>2 \times 10^{-4}</math>, на основе подсчета «злокачественных» множеств локализаций ошибок [3].
2. Из доказательств существования порогов следует, что построение рабочего квантового компьютера возможно ''в принципе''. Физикам необходимо только разработать квантовые системы с достаточно низким константным уровнем шума. Но для реализации потенциала квантового компьютера потребуются ''практические'' схемы обеспечения отказоустойчивости. Такие схемы должны будут выдерживать высокий уровень шума (а не просто константный) и достигать этой цели с низкими накладными расходами (а не просто полилогарифмическими). Однако грубые оценки допустимого уровня шума согласно исходным доказательствам существования не являются многообещающими – необходим уровень ниже <math>10^{-6}</math> на вентиль. Если истинный порог составляет всего <math>10^{-6}</math>, то построить квантовый компьютер будет практически невозможно. Поэтому, во-вторых, была проведена значительная работа по оптимизации схем обеспечения отказоустойчивости – главным образом с целью повышения допустимого уровня шума. Такие оптимизации обычно оцениваются с помощью симуляций и эвристических аналитических моделей. Однако недавно Алиферис, Готтесман и Прескилл разработали метод доказательства достаточно хороших нижних границ порога, до <math>2 \times 10^{-4}</math>, на основе подсчета «злокачественных» множеств локализаций ошибок [3].
 
 
В своей революционной работе Книлл [6] построил новую схему обеспечения отказоустойчивости, основанную на очень эффективных кодах с расстоянием ''два''. Его коды не исправляют ошибки; в схеме активно используется поствыбор в случае отсутствия обнаруженных ошибок – т. е. при обнаружении ошибки объемлющая подпрограмма перезапускается. Клнилл оценил порог на уровне выше 3% на каждый вентиль, что на порядок больше предыдущих оценок. Рейхардт доказал нижнюю границу порога <math>10^{-3}</math> для аналогичной схемы [7], отчасти поддерживая высокую оценку Книлла. Однако зависимость от поствыбора приводит к огромным накладным расходам при высокой частоте ошибок, что значительно снижает практичность. (Классическая схема отказоустойчивости, основанная на обнаружении ошибок, может не быть эффективной, но квантовая телепортация допускает, по крайней мере, теоретическую эффективность схемы Книлла). По-видимому, существует компромисс между допустимым уровнем шума и накладными расходами, необходимыми для его достижения.
 
 
Имеется несколько взаимодополняющих подходов к обеспечению квантовой отказоустойчивости. Для достижения максимальной эффективности целесообразно использовать любую известную структуру шума, прежде чем переходить к общим процедурам обеспечения отказоустойчивости. Специализированные методы включают тщательное квантовое проектирование, методы ядерного магнитного резонанса (ЯМР), такие как динамическая развязка и композитные последовательности импульсов, а также подпространства, свободные от декогерентности. Для очень малых квантовых компьютеров такие методы могут обеспечить достаточную защиту от шума.




В своей революционной работе Книлл [6] построил новую схему отказоустойчивости, основанную на очень эффективных кодах с расстоянием ''два''. Его коды не исправляют ошибки; в схеме активно используется поствыбор в случае отсутствия обнаруженных ошибок – т. е. при обнаружении ошибки объемлющая подпрограмма перезапускается. Клнилл оценил порог на уровне выше 3% на каждый вентиль, что на порядок больше предыдущих оценок. Рейхардт доказал нижнюю границу порога <math>10^{-3}</math> для аналогичной схемы [7], отчасти поддерживая высокую оценку Книлла. Однако зависимость от поствыбора приводит к огромным накладным расходам при высокой частоте ошибок, что значительно снижает практичность. (Классическая схема отказоустойчивости, основанная на обнаружении ошибок, может не быть эффективной, но квантовая телепортация допускает, по крайней мере, теоретическую эффективность схемы Книлла). По-видимому, существует компромисс между допустимым уровнем шума и накладными расходами, необходимыми для его достижения. Существует несколько взаимодополняющих подходов к обеспечению квантовой отказоустойчивости. Для достижения максимальной эффективности целесообразно использовать любую известную структуру шума, прежде чем переходить к общим процедурам отказоустойчивости. Специализированные методы включают тщательное квантовое проектирование, методы ядерного магнитного резонанса (ЯМР), такие как динамическая развязка и композитные последовательности импульсов, а также подпространства, свободные от декогерентности. Для очень малых квантовых компьютеров такие методы могут обеспечить достаточную защиту от шума.
Не исключено, что будет спроектировано или открыто надежное по своей сути квантово-вычислительное устройство, подобное транзистору для классических вычислений, и это является целью ''топологических'' квантовых вычислений [4].
Не исключено, что будет спроектировано или открыто надежное по своей сути квантово-вычислительное устройство, подобное транзистору для классических вычислений, и это является целью ''топологических'' квантовых вычислений [4].


Строка 57: Строка 62:


== Открытые вопросы ==
== Открытые вопросы ==
Борьба с шумом может оказаться самой сложной задачей при построении квантового компьютера. В настоящее время нижние оценки физиками достижимых уровней шума лишь незначительно ниже теоретических (в основном основанных на моделировании) верхних оценок допустимых уровней шума при разумных уровнях накладных расходов. Однако эти оценки были сделаны при помощи различных моделей шума: большинство симуляций основано на простой независимой модели деполяризационного шума, а нижние пороговые значения для моделей шума более общего вида значительно ниже. Кроме того, оба сообщества могут оказаться чрезмерно оптимистичными. Неожиданные источники шума вполне могут появиться при продолжении экспериментов. Вероятностные модели шума, используемые теоретиками в симуляциях, могут достаточно далеко отстоять от реальности, а компромисс между накладными расходами и порогом может оказаться непрактичным. Не ясно, будут ли отказоустойчивые квантовые вычисления работать на практике, если не удастся справиться с неэффективностью системы. Главной нерешенной задачей остается разработка более эффективных методов поддержки отказоустойчивости. Для нахождения более эффективных компромиссов и стратегий работы с ограничениями на локальность вентилей потребуется разработка квантовых систем с более реалистичными симуляциями.
Борьба с шумом может оказаться самой сложной задачей при построении квантового компьютера. В настоящее время нижние оценки физиками достижимых уровней шума лишь незначительно ниже теоретических (в основном основанных на моделировании) верхних оценок допустимых уровней шума при разумных уровнях накладных расходов. Однако эти оценки были сделаны при помощи различных моделей шума: большинство симуляций основано на простой независимой модели деполяризационного шума, а нижние пороговые значения для моделей шума более общего вида являются значительно более низкими. Кроме того, оба сообщества могут оказаться чрезмерно оптимистичными. При продолжении экспериментов вполне могут появиться неожиданные источники шума. Вероятностные модели шума, используемые теоретиками в симуляциях, могут достаточно далеко отстоять от реальности, а компромисс между накладными расходами и порогом может оказаться непрактичным. Не ясно, будут ли отказоустойчивые квантовые вычисления работать на практике, если не удастся справиться с неэффективностью системы. Главной нерешенной задачей остается разработка более эффективных методов поддержки отказоустойчивости. Для нахождения более оптимальных компромиссов и стратегий работы с ограничениями на локальность вентилей потребуется разработка квантовых систем с более реалистичными симуляциями.




Разрыв между верхними границами порога, оценками порога и строго доказанными нижними границами порога сокращается – по крайней мере, для простых моделей шума. Однако понимание того, чего ожидать от более реалистичных моделей шума, пока еще недостаточно развито. Одно из текущих направлений исследований заключается в расширении доказанных значений порогов на более реалистичные модели шума – например, в [2]. Основной открытый вопрос здесь заключается в том, можно ли показать, что порог шума ''существует'' даже там, где гамильтониан ванны не ограничен – например, если кубиты системы соединены с гармоническим осциллятором с немарковской ванной. Даже когда порог известен, строгие нижние ''границы'' порога в более общих моделях шума все еще могут быть слишком консервативными (согласно аргументам, главным образом интуитивным и известным как «закручивание»); и, поскольку моделирование моделей шума общего вида оказывается непрактичным, для более эффективного анализа необходимы новые идеи.
Разрыв между верхними границами порога, оценками порога и строго доказанными нижними границами порога сокращается – по крайней мере, для простых моделей шума. Однако понимание того, чего ожидать от более реалистичных моделей шума, пока еще недостаточно развито. Одно из текущих направлений исследований заключается в расширении доказанных значений порогов на более реалистичные модели шума – например, в [2]. Основной открытый вопрос здесь заключается в том, можно ли показать, что порог шума ''существует'' даже там, где гамильтониан ванны не ограничен – например, если кубиты системы соединены с гармоническим осциллятором с немарковской ванной. Даже когда известно, что порог существует, строгие нижние ''границы'' порога в более общих моделях шума все еще могут быть слишком консервативными (согласно аргументам, главным образом интуитивным и известным как «закручивание»); и, поскольку моделирование моделей шума общего вида оказывается непрактичным, для более эффективного анализа необходимы новые идеи.




Строка 72: Строка 77:


== Ссылка на код ==
== Ссылка на код ==
Эндрю Кросс написал и распространяет код, дающий оценки методом Монте-Карло и строгие нижние границы для порогов отказоустойчивости: http://web.mit.edu/awcross/www/qasm-tools/. Эмануэль Книлл опубликовал код Mathematica для оценки порогов отказоустойчивости для некоторых схем, основанных на поствыборе: http://arxiv.org/e-print/quant-ph/0404104.
Эндрю Кросс написал и распространяет код, дающий оценки методом Монте-Карло и строгие нижние границы для порогов отказоустойчивости: http://web.mit.edu/awcross/www/qasm-tools/. Эмануэль Книлл опубликовал код ''Mathematica'' для оценки порогов отказоустойчивости для некоторых схем, основанных на поствыборе: http://arxiv.org/e-print/quant-ph/0404104.


== См. также ==
== См. также ==
4430

правок