Аноним

Минимальные k-связные геометрические сети: различия между версиями

Материал из WEGA
м
Строка 78: Строка 78:




Поскольку задачи о многосвязности с нахождением объектов минимальной стоимости довольно сложны, исследователи обращаются к алгоритмам аппроксимации. Объединяя некоторые идеи, разработанные Аророй [ ] (см. также [ ]) для алгоритмов аппроксимации задачи коммивояжера с полиномиальным временем выполнения, с несколькими новыми идеями, разработанными специально для решения задач о многосвязности в геометрических сетях, Шумай и Лингас получили следующие результаты.
Поскольку задачи о многосвязности с нахождением объектов минимальной стоимости довольно сложны, исследователи обращаются к алгоритмам аппроксимации. Объединяя некоторые идеи, сформулированные Аророй [ ] (см. также [ ]) для алгоритмов аппроксимации задачи коммивояжера с полиномиальным временем выполнения, с несколькими новыми идеями, разработанными специально для решения задач о многосвязности в геометрических сетях, Шумай и Лингас получили следующие результаты.




Теорема 4 ([5, 6]). Пусть k и d – любые целые числа, d > 2, а " – любое положительное вещественное число. Пусть S – множество из n точек в пространстве Rd. Существует рандомизированный алгоритм, который за время
Теорема 4 ([5, 6]). Пусть k и d – любые целые числа, d > 2, а " – любое положительное вещественное число. Пусть S – множество из n точек в пространстве Rd. Существует рандомизированный алгоритм, который за время
n ■ (log n)(kd/")O(d) ■ 22(kd/")O(d) с вероятностью не менее 0,99 находит k-вершинно-связную (или k-реберно-связную) остовную сеть для S, стоимость которой не больше чем в (1 + ") раз превышает оптимальную.
n ■ (log n)(kd/")O(d) ■ 22(kd/")O(d) с вероятностью не менее 0,99 находит k-вершинно-связную (или k-реберно-связную) остовную сеть для S, стоимость которой не более чем в (1 + ") раз превышает оптимальную.


Кроме того, этот алгоритм может быть дерандомизирован за полиномиальное время с тем, чтобы возвращать k-вершинно-связную (или k-реберно-связную) остовную сеть для S, стоимость которой не больше чем в (1 + ") раз превышает оптимальную.
Кроме того, этот алгоритм может быть дерандомизирован за полиномиальное время с тем, чтобы возвращать k-вершинно-связную (или k-реберно-связную) остовную сеть для S, стоимость которой не более чем в (1 + ") раз превышает оптимальную.




Строка 98: Строка 98:




Теорема 6 ([5]). Пусть k и d – любые целые числа, d > 2, а " – любое положительное вещественное число. Пусть S – множество из n точек в пространстве Rd. Существует рандомизированный алгоритм, который за время n ■ (log n)(kd/")O(d) ■ 0(kd/")O(d) с вероятностью не менее 0,99 находит k-реберно-связную остовную мультисеть для S, стоимость которой не больше чем в (1 + ") раз превышает оптимальную. Этот алгоритм может быть дерандомизирован за полиномиальное время.
Теорема 6 ([5]). Пусть k и d – любые целые числа, d > 2, а " – любое положительное вещественное число. Пусть S – множество из n точек в пространстве Rd. Существует рандомизированный алгоритм, который за время n ■ (log n)(kd/")O(d) ■ 0(kd/")O(d) с вероятностью не менее 0,99 находит k-реберно-связную остовную мультисеть для S, стоимость которой не более чем в (1 + ") раз превышает оптимальную. Этот алгоритм может быть дерандомизирован за полиномиальное время.




Строка 104: Строка 104:




Теорема 7 (Схемы аппроксимации для 2-связных графов, [5]). Пусть d – любое целое число, d > 2, а " – любое положительное вещественное число. Пусть S – множество из n точек в пространстве Rd. Существует рандомизированный алгоритм, который за время n ■ log n • (d/")O(d) с вероятностью не менее 0,99 находит 2-вершинно-связную (или 2-реберно-связную) остовную сеть для S, стоимость которой не больше чем в (1 + ") раз превышает оптимальную. Этот алгоритм может быть дерандомизирован за полиномиальное время.
Теорема 7 (Схемы аппроксимации для 2-связных графов, [5]). Пусть d – любое целое число, d > 2, а " – любое положительное вещественное число. Пусть S – множество из n точек в пространстве Rd. Существует рандомизированный алгоритм, который за время n ■ log n • (d/")O(d) с вероятностью не менее 0,99 находит 2-вершинно-связную (или 2-реберно-связную) остовную сеть для S, стоимость которой не более чем в (1 + ") раз превышает оптимальную. Этот алгоритм может быть дерандомизирован за полиномиальное время.




Строка 110: Строка 110:




Теорема 8 ([7]). Пусть d – любое целое число, d > 2, а " – любое положительное вещественное число. Пусть S – множество из n точек в пространстве Rd. Существует рандомизированный алгоритм, который за время n ■ log n • (d/")O(d) + n-2{dls)°{i2) + n-22i с вероятностью не менее 0,99 находит 2-вершинно-связную (или 2-реберно-связную) остовную сеть Штейнера для S, стоимость которой не больше чем в (1 + ") раз превышает оптимальную. Этот алгоритм может быть дерандомизирован за полиномиальное время.
Теорема 8 ([7]). Пусть d – любое целое число, d > 2, а " – любое положительное вещественное число. Пусть S – множество из n точек в пространстве Rd. Существует рандомизированный алгоритм, который за время n ■ log n • (d/")O(d) + n-2{dls)°{i2) + n-22i с вероятностью не менее 0,99 находит 2-вершинно-связную (или 2-реберно-связную) остовную сеть Штейнера для S, стоимость которой не более чем в (1 + ") раз превышает оптимальную. Этот алгоритм может быть дерандомизирован за полиномиальное время.




4430

правок