Аноним

Компоновка схемы: различия между версиями

Материал из WEGA
м
Строка 100: Строка 100:
Неподвижная точка f представляет собой псевдовершину с нулевой площадью, зафиксированную в точке <math>(x_f, y_f) \;</math> и связанную с одной вершиной H(f) в гиперграфе при помощи псевдоребра весом <math>w_{f, H(f)} \;</math>. Квадратичная компоновка с неподвижной точкой задается формулой <math>\Phi(x) = \sum_{i, j} w_{i, j} \; (x_i - x_j)^2 + \sum_f w_{f, H(f)} \; (x_{H(f)} - x_f)^2</math>. Каждая неподвижная точка f вводит квадратичный член <math>w_{f, H(f)} \; (x_{H(f)} - x_f)^2</math>. Манипулируя положениями неподвижных точек, можно добиться того, что компоновка будет удовлетворять целевым ограничениям плотности. По сравнению с постоянно действующими силами неподвижные точки повышают контролируемость и стабильность итераций алгоритма компоновки [5].
Неподвижная точка f представляет собой псевдовершину с нулевой площадью, зафиксированную в точке <math>(x_f, y_f) \;</math> и связанную с одной вершиной H(f) в гиперграфе при помощи псевдоребра весом <math>w_{f, H(f)} \;</math>. Квадратичная компоновка с неподвижной точкой задается формулой <math>\Phi(x) = \sum_{i, j} w_{i, j} \; (x_i - x_j)^2 + \sum_f w_{f, H(f)} \; (x_{H(f)} - x_f)^2</math>. Каждая неподвижная точка f вводит квадратичный член <math>w_{f, H(f)} \; (x_{H(f)} - x_f)^2</math>. Манипулируя положениями неподвижных точек, можно добиться того, что компоновка будет удовлетворять целевым ограничениям плотности. По сравнению с постоянно действующими силами неподвижные точки повышают контролируемость и стабильность итераций алгоритма компоновки [5].


'''
 
Обобщенное распространение под действием силы'''
'''Обобщенное распространение под действием силы'''


Уравнение Гельмгольца моделирует процесс диффузии и идеально подходит для распространения вершин [3]. Уравнение Гельмгольца задается выражением
Уравнение Гельмгольца моделирует процесс диффузии и идеально подходит для распространения вершин [3]. Уравнение Гельмгольца задается выражением
Строка 107: Строка 107:
(4) <math>\frac{\partial ^2 \phi(x, y)}{\partial x^2} + \frac{\partial ^2 \phi(x, y)}{\partial y^2} - \epsilon \phi(x, y) = D(x, y), (x, y) \in R \frac{\partial \phi}{\partial v} = 0, (x, y)</math> на границе R,
(4) <math>\frac{\partial ^2 \phi(x, y)}{\partial x^2} + \frac{\partial ^2 \phi(x, y)}{\partial y^2} - \epsilon \phi(x, y) = D(x, y), (x, y) \in R \frac{\partial \phi}{\partial v} = 0, (x, y)</math> на границе R,


где <math>\epsilon > 0 \;</math>, v – внешняя единичная нормаль, R представляет неподвижный контур, а D(x,y) – непрерывную функцию плотности. Граничные условия дф/dv = 0 диктуют, чтобы силы, направленные вовне неподвижного контура, были установлены равными нулю – этим данный подход отличается от метода Пуассона, в котором предполагается, что сила становится равной нулю на бесконечности. Значение ф^ в центре каждого контейнера Bij вычисляется посредством дискретизации уравнения (4) методом конечных разностей. Ограничения плотности заменяются требованием ф{^ = К, У Bij 2 B, где К – масштабированный представитель целевой функции плотности K. Задача минимизации длины проводов с учетом сглаженных ограничений плотности может быть решена при помощи алгоритма Узавы. В случае квадратичной функции длины провода этот алгоритм представляет собой обобщение метода распространения под действием силы.
где <math>\epsilon > 0 \;</math>, v – внешняя единичная нормаль, R представляет неподвижный контур, а D(x,y) – непрерывную функцию плотности. Граничные условия <math>\frac{\partial \phi}{\partial v} = 0 \;</math> диктуют, чтобы силы, направленные вовне неподвижного контура, были установлены равными нулю – этим данный подход отличается от метода Пуассона, в котором предполагается, что сила становится равной нулю на бесконечности. Значение <math>\phi_{i, j} \;</math> в центре каждого контейнера <math>B_{ij} \;</math> вычисляется посредством дискретизации уравнения (4) методом конечных разностей. Ограничения плотности заменяются требованием <math>\phi_{ij} = \hat{k} \; \forall B_{ij) \in B</math>, где <math>\hat{k} \;</math> – масштабированный представитель целевой функции плотности K. Задача минимизации длины проводов с учетом сглаженных ограничений плотности может быть решена при помощи алгоритма Узавы. В случае квадратичной функции длины провода этот алгоритм представляет собой обобщение метода распространения под действием силы.




4430

правок