Аноним

Декомпозиция на значительно удаленные пары: различия между версиями

Материал из WEGA
м
нет описания правки
мНет описания правки
 
(не показаны 2 промежуточные версии этого же участника)
Строка 53: Строка 53:




Для множества точек с неограниченной плотностью применяется техника кластеризации, сходная с техникой из [6], результатом применения которой оказывается множество «центральных узлов» с ограниченной плотностью. После этого к множеству центральных узлов применяется алгоритм для множеств ограниченной плотности. Наконец, для получения декомпозиции на значительно удаленные пары выполняется комбинация алгоритмов декомпозиции для множеств точек с ограниченной плотностью и для евклидовой метрики. Количество пар финальной декомпозиции определяется количеством пар, построенных для множества константной плотности, которое, в свою очередь, определяется границей, полученной при помощи соображения об упаковке. Было показано, что граница количества пар является строгой для <math>k \ge 3 \;</math>.
Для множества точек с неограниченной плотностью применяется техника кластеризации, сходная с техникой из [6], результатом применения которой оказывается множество «центральных узлов» с ограниченной плотностью. После этого к множеству центральных узлов применяется алгоритм для множеств ограниченной плотности. Наконец, для получения декомпозиции на значительно удаленные пары выполняется комбинация алгоритмов декомпозиции для множеств точек с ограниченной плотностью и для евклидовой метрики. Количество пар финальной декомпозиции определяется количеством пар, построенных для множества константной плотности, которое, в свою очередь, определяется границей, полученной при помощи соображения об упаковке. Было показано, что граница количества пар является точной для <math>k \ge 3 \;</math>.


== Применение ==
== Применение ==
Строка 75: Строка 75:




Используя декомпозицию на значительно удаленные пары, Гао и Чжан [7] показали, что можно получить более эффективные алгоритмы аппроксимации вышеприведенных задач о близости для метрики на графе единичных дисков. В частности, можно получить алгоритмы с почти линейным временем выполнения для вычисления 2,42-аппроксимации и алгоритмы с временем выполнения <math>O(n \sqrt{n \; log \; n} / \varepsilon^3)</math> для вычисления <math>(1 + \varepsilon) \;</math>-аппроксимации для любого <math>\varepsilon > 0 \;</math>. Кроме того, декомпозицию на значительно удаленные пары можно использовать для получения оракула расстояния, требующего <math>O(n \; log \; n / \varepsilon^4)</math> объема памяти, такого, что на любой <math>(1 + \varepsilon) \;</math>-запрос расстояния в графе единичных дисков можно получить ответ за время O(1).
Используя декомпозицию на значительно удаленные пары, Гао и Чжан [7] показали, что можно получить более эффективные аппроксимационные алгоритмы вышеприведенных задач о близости для метрики на графе единичных дисков. В частности, можно получить алгоритмы с почти линейным временем выполнения для вычисления 2,42-аппроксимации и алгоритмы с временем выполнения <math>O(n \sqrt{n \; log \; n} / \varepsilon^3)</math> для вычисления <math>(1 + \varepsilon) \;</math>-аппроксимации для любого <math>\varepsilon > 0 \;</math>. Кроме того, декомпозицию на значительно удаленные пары можно использовать для получения оракула расстояния, требующего <math>O(n \; log \; n / \varepsilon^4)</math> объема памяти, такого, что на любой <math>(1 + \varepsilon) \;</math>-запрос расстояния в графе единичных дисков можно получить ответ за время O(1).




Узким местом всех вышеупомянутых алгоритмов является приближенное вычисление расстояний по кратчайшим путям между O(n log n) парами. Алгоритм работы [7] только строит декомпозицию на значительно удаленные пары, не делая подходящего приближенного вычисления расстояний. Коэффициент аппроксимации и время выполнения определяются соответствующими параметрами алгоритма аппроксимации, используемого для оценки расстояния между каждой парой в декомпозиции на значительно удаленные пары. После выполнения оценки расстояния оставшаяся часть вычисления требует почти линейного времени.
Узким местом всех вышеупомянутых алгоритмов является приближенное вычисление расстояний по кратчайшим путям между O(n log n) парами. Алгоритм работы [7] только строит декомпозицию на значительно удаленные пары, не делая подходящего приближенного вычисления расстояний. Коэффициент аппроксимации и время выполнения определяются соответствующими параметрами аппроксимационного алгоритма, используемого для оценки расстояния между каждой парой в декомпозиции на значительно удаленные пары. После выполнения оценки расстояния оставшаяся часть вычисления требует почти линейного времени.




Строка 84: Строка 84:


== Открытые вопросы ==
== Открытые вопросы ==
Важнейшей нерешенной проблемой является разрыв между <math>\Omega(n) \;</math> и O(n log n) в количестве необходимых пар на плоскости. Кроме того, временная граница <math>(1 + \varepsilon) \;</math>-аппроксимации до сих пор близка к <math>\tilde{O} (n \sqrt{n})</math> из-за отсутствия эффективных способов вычисления <math>(1 + \varepsilon) \;</math>-приближенных расстояний по кратчайшим путям между O(n) парами точек. Любое улучшение алгоритма решения этой задачи немедленно приведет к улучшению всех алгоритмов <math>(1 + \varepsilon) \;</math>-аппроксимации, упоминавшихся выше.
Важнейшей нерешенной проблемой является разрыв между <math>\Omega(n) \;</math> и <math>O(n \; log \; n)</math> в количестве необходимых пар на плоскости. Кроме того, временная граница <math>(1 + \varepsilon) \;</math>-аппроксимации до сих пор близка к <math>\tilde{O} (n \sqrt{n})</math> из-за отсутствия эффективных способов вычисления <math>(1 + \varepsilon) \;</math>-приближенных расстояний по кратчайшим путям между O(n) парами точек. Любое улучшение алгоритма решения этой задачи немедленно приведет к улучшению всех алгоритмов <math>(1 + \varepsilon) \;</math>-аппроксимации, упоминавшихся выше.


== См. также ==
== См. также ==
4430

правок