Аноним

Алгоритмы обхода препятствий в беспроводных сетях датчиков: различия между версиями

Материал из WEGA
Строка 105: Строка 105:


== Открытые вопросы ==
== Открытые вопросы ==
(1) Сложные вогнутые объекты, наподобие представленного на рис. 1d, по-прежнему представляют серьезную проблему для облегченных протоколов, поскольку в этой конфигурации эффективность GRIC напрямую зависит от плотности сети. (2) Низкая и очень низкая плотность сети порождает проблемы в присутствии крупных препятствий, даже если они оказываются «простыми» и выпуклыми, как на рис. 1b. (3) Задача, относящаяся к случаю трехмерных сетей, остается открытой. Инерция отчасти помогает делу, однако виртуальный компас и правило правой руки жестко привязаны к двумерной плоскости. (4) GRIC не свободен от циклов. Для практических задач очень нужен механизм выявления циклов или слишком длинных маршрутов. (5) Работа GRIC недостаточно изучена. Не имеется аналитических результатов, можно также рассмотреть такие новые метрики, как срок жизни сети, потребление энергии или перегрузка по трафику.
== См. также ==
* [[Вероятностная пересылка данных в беспроводных сетях датчиков]]
== Литература ==
1. Ahmed, N., Kanhere, S.S., Jha, S.: The holes problem in wireless sensor networks: a survey. SIGMOBILE Mob. Comput.Com-mun. Rev. 9,4-18 (2005)
2. Al-Karaki, J.N., Kamal, A.E.: Routing techniques in wireless sensor networks: a survey. Wirel. Commun. IEEE 11,6-28 (2004)
3. Bose, P., Morin, P., Stojmenovic, I., Urrutia, J.: Routing with guaranteed delivery in ad hoc wireless networks. In: Discrete Algorithms and Methods for Mobile Computing and Communications (1999)
4. Chatzigiannakis, I., Dimitriou, T., Nikoletseas, S., Spirakis, P.: A probabilistic forwarding protocol for efficient data propagation in sensor networks. In: European Wireless Conference on Mobility and Wireless Systems beyond 3G (EW 2004), pp. 344-350. Barcelona, Spain, 27 February 2004
5. Chatzigiannakis, I., Mylonas, G., Nikoletseas, S.: Modeling and evaluation of the effect of obstacles on the performance of wireless sensor networks. In: 39th ACM/IEEE Simulation Symposium (ANSS), Los Alamitos, CA, USA, IEEE Computer Society, pp. 50-60 (2006)
6. Chatzigiannakis, I., Nikoletseas S., Spirakis, P.: Smart dust protocols for local detection and propagation. J. Mob. Netw. (MONET) 10,621-635 (2005)
7. Karl, H., Willig, A.: Protocols and Architectures for Wireless Sensor Networks. Wiley, West Sussex (2005)
8. Karp, B., Kung, H.T.: GPSR: greedy perimeter stateless routing for wireless networks. In: Mobile Computing and Networking. ACM, New York (2000)
9. Kim, Y.J., Govindan, R., Karp, B., Shenker, S.: Lazy cross-link removal for geographic routing. In: Embedded Networked Sensor Systems. ACM, New York (2006)
10. Kuhn, F., Wattenhofer, R., Zhang, Y., Zollinger, A.: Geometric ad-hoc routing: of theory and practice. In: Principles of Distributed Computing. ACM, New York (2003)
11. Lee, S., Bhattacharjee, B., Banerjee, S.: Efficient geographic routing in multihop wireless networks. In MobiHoc '05: Proceedings of the 6th ACM international symposium on Mobile ad hoc networking and computing, pp. 230-241. ACM, New York (2005)
12. Powell, O., Nikolesteas, S.: Simple and efficient geographic routing around obstacles for wireless sensor networks. In: WEA 6th Workshop on Experimental Algorithms, Rome, Italy. Springer, Berlin (2007)
13. Stojmenovic, I., Lin, X.: Loop-free hybrid single-path/flooding routing algorithms with guaranteed delivery for wireless networks. IEEE Trans. Paral. Distrib. Syst. 12,1023-1032 (2001)
14. Takagi, H., Kleinrock, L.: Optimal transmission ranges for randomly distributed packet radio terminals. Communications, IEEE Trans. [legacy, pre - 1988]. 32,246-257 (1984)
4430

правок