Hypercycle

Материал из WEGA

Hypercycle --- гиперцикл.

A sequence [math]\displaystyle{ C = (e_{1}, \ldots, e_{k}, e_{1}) }[/math] of edges is a hypercycle if [math]\displaystyle{ e_{i} \cap e_{i+1 \pmod{k}} \neq \emptyset }[/math] for [math]\displaystyle{ 1 \leq i \leq k }[/math]. The length of [math]\displaystyle{ C }[/math] is [math]\displaystyle{ k }[/math]. A hypergraph is [math]\displaystyle{ \alpha }[/math]-acyclic if it is conformal and contains no chordless hypercycles of length at least 3.