Аноним

Теорема Татта: различия между версиями

Материал из WEGA
нет описания правки
Нет описания правки
Нет описания правки
 
Строка 1: Строка 1:
'''Теорема Татта''' (''[[W.T.Tutte, 1947]]'') -
'''Теорема Татта''' (''[[W.T.Tutte, 1947]]'') [[Граф]] <math>\,G</math> имеет [[совершенное паросочетание]] тогда и только тогда, когда число нечетных компонент <math>c_{1}(G \setminus X)</math> [[подграф|подграфа]] <math>G \setminus X</math> для любого подмножества [[вершина|вершин]] <math>X \subseteq V(G)</math> удовлетворяет неравенству
[[Граф]] <math>G</math> имеет [[совершенное паросочетание]] тогда и только тогда, когда число нечетных компонент <math>c_{1}(G \setminus X)</math> [[подграф|подграфа]] <math>G \setminus X</math> для любого подмножества [[вершина|вершин]] <math>X \subseteq V(G)</math> удовлетворяет неравенству


<math>c_{1}(G \setminus X) \leq |X|.</math>
:::::<math>c_{1}(G \setminus X) \leq |X|.</math>
==Литература==
==Литература==
[Татт],  
* Татт У. Теория графов. — М.:Мир, 1988.
* Bondy J.A., Murty U.S.R. Graph theory with applications. —  New York; Amsterdam; Oxford: North-Holland, 1976.


[<math>Lov\acute{a}sz</math>],
* <math>Lov\acute{a}sz\,\, L.\,\, Combinatorial\,\, problems\,\, and\,\, exercises.\,\, -\,\,  Budapest:\,\, Acad\acute{e}miqi\,\, Kiado,\,\, 1979. </math>
 
[Bondy-Murty]