Аноним

Леммы о разрастании: различия между версиями

Материал из WEGA
нет описания правки
(Создана новая страница размером '''Леммы о разрастании''' (''Pumping lemmas'') - следующие две теоремы, выражающие необ...)
 
Нет описания правки
Строка 4: Строка 4:
языкам.
языкам.


Пусть </math>L<math> --- ''регулярное множество''. Существует такая
Пусть <math>L</math> --- ''регулярное множество''. Существует такая
константа </math>k<math>, что если </math>\omega \in L<math> и </math>\mid \omega \mid
константа <math>k</math>, что если <math>\omega \in L</math> и <math>\mid \omega \mid
\geq k<math>, то цепочку </math>\omega<math> можно представить в виде </math>xyz<math>,
\geq k</math>, то цепочку <math>\omega</math> можно представить в виде <math>xyz</math>,
где </math>0< \mid y \mid \leq k<math> и </math>xy^{i}z \in L<math> для всех </math>i
где <math>0< \mid y \mid \leq k</math> и <math>xy^{i}z \in L</math> для всех <math>i
\geq 0<math>.
\geq 0</math>.


Для любого ''контекстно-свободного языка'' </math>L<math> существуют
Для любого ''контекстно-свободного языка'' <math>L</math> существуют
такие целые </math>l<math> и </math>k<math>, что любая цепочка </math>\alpha<math> из
такие целые <math>l</math> и <math>k</math>, что любая цепочка <math>\alpha</math> из
</math>L,\mid\alpha \mid >l<math>, представима в виде </math>\alpha = uvwxy<math>,
<math>L,\mid\alpha \mid >l</math>, представима в виде <math>\alpha = uvwxy</math>,
где
где


(1) </math>\mid vwx\mid \leq k<math>;
(1) <math>\mid vwx\mid \leq k</math>;


(2) </math>vx\neq e<math>;
(2) <math>vx\neq e</math>;


(3) </math>uv^iwx^iy\in L<math> для любого </math>i\geq 0<math>.
(3) <math>uv^iwx^iy\in L</math> для любого <math>i\geq 0</math>.
==Литература==
==Литература==
[Ахо-Ульман],  
[Ахо-Ульман],