Аноним

Data dependence: различия между версиями

Материал из WEGA
нет описания правки
(Новая страница: «'''Data dependence''' --- зависимость по данным. In general terms, a statement <math>T</math> '''depends''' on a statement <math>S</math>, denot…»)
 
Нет описания правки
 
Строка 1: Строка 1:
'''Data dependence''' --- зависимость по данным.  
'''Data dependence''' —''[[зависимость по данным]].''


In general terms, a statement <math>T</math> '''depends''' on a statement <math>S</math>, denoted
In general terms, a statement <math>\,T</math> '''depends''' on a statement <math>\,S</math>, denoted by <math>\,S \delta T</math>, if there exist an instance <math>\,S'</math> of <math>\,S</math>, an instance <math>\,T'</math> of <math>\,T</math>, and a memory location <math>\,M</math>, such that the following properties hold:
by <math>S \delta T</math>, if there exist an instance <math>S'</math> of <math>S</math>, an instance
<math>T'</math> of <math>T</math>, and a memory location <math>M</math>, such that the following properties hold:


(1) both <math>S'</math> and <math>T'</math> are references to <math>M</math>, and at least one of those
(1) both <math>\,S'</math> and <math>\,T'</math> are references to <math>\,M</math>, and at least one of those references is a ''write'';
references is a ''write'';


(2) in a serial execution of the program, <math>S'</math> is executed before <math>T'</math>;
(2) in a serial execution of the program, <math>\,S'</math> is executed before <math>\,T'</math>; and
and


(3) in the same execution, <math>M</math> is not written between the time <math>S'</math>
(3) in the same execution, <math>\,M</math> is not written between the time <math>\,S'</math> finishes and the time <math>\,T'</math> starts.
finishes and the time <math>T'</math> starts.


The following three types of dependence between the statements <math>S</math> and <math>T</math>
The following three types of dependence between the statements <math>\,S</math> and <math>\,T</math> based upon the types of the two references to <math>\,M</math> are considered:
based upon the types of the two references to <math>M</math> are considered:




(1) <math>T</math> is '''flow (true) dependent''' on <math>S</math>, (<math>S \delta T</math>), if <math>S'</math> writes to
(1) <math>\,T</math> is '''flow (true) dependent''' on <math>\,S</math>, (<math>\,S \delta T</math>), if <math>\,S'</math> writes to <math>\,M</math> and then <math>\,T'</math> reads it.
<math>M</math> and then <math>T'</math> reads it.


(2) <math>T</math> is '''anti-dependent''' on <math>S</math>, (<math>S \bar{\delta} T</math>), if <math>S'</math> reads <math>M</math>
(2) <math>\,T</math> is '''anti-dependent''' on <math>\,S</math>, (<math>\,S \bar{\delta} T</math>), if <math>\,S'</math> reads <math>\,M</math> and then <math>\,T'</math> writes to it.
and then <math>T'</math> writes to it.


(3) <math>T</math> is '''output dependent''' on <math>S</math>, (<math>S \delta^{o} T</math>), if <math>S'</math> writes to <math>M</math>
(3) <math>\,T</math> is '''output dependent''' on <math>\,S</math>, (<math>\,S \delta^{o} T</math>), if <math>\,S'</math> writes to <math>\,M</math> and then <math>\,T'</math> writes to it again.
and then <math>T'</math> writes to it again.
 
==Литература==
*Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.
 
[[Категория:Основные термины]]