Аноним

Dag of control flow graph: различия между версиями

Материал из WEGA
нет описания правки
(Новая страница: «'''Dag of control flow graph''' --- каркас уграфа. A '''dag''' of a ''cf-graph''<math>G</math> with an initial node <math>p</math> is an acyclic cf-grap…»)
 
Нет описания правки
Строка 1: Строка 1:
'''Dag of control flow graph''' --- каркас уграфа.
'''Dag of control flow graph''' — "[[каркас уграфа]]."


A '''dag''' of a ''cf-graph''<math>G</math> with an initial node <math>p</math> is an acyclic
A '''[[DAG|dag]]''' of a ''cf-graph''<math>\,G</math> with an [[initial node]] <math>\,p</math> is an acyclic cf-graph <math>\,D</math> with the initial node <math>\,p</math> such that <math>\,V(G)=V(D)</math>, <math>\,A(D)\subseteq A(G)</math> and for any arc <math>u\in A(G)\backslash A(D)</math> the [[graph, undirected graph, nonoriented graph|graph]] <math>\,D \bigcup \{u\}</math> has a [[cycle]]. That is, <math>\,D</math> is  a maximal [[acyclic graph|acyclic]] [[subflowgraph]].
cf-graph <math>D</math> with the initial node <math>p</math> such that
 
<math>V(G)=V(D)</math>, <math>A(D)\subseteq A(G)</math> and for any arc <math>u\in A(G)\backslash A(D)</math> the
==Литература==
graph <math>D \bigcup \{u\}</math> has a cycle. That is, <math>D</math> is  a maximal acyclic
*Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.
subflowgraph.
 
[[Категория:Основные термины]]