4551
правка
Irina (обсуждение | вклад) мНет описания правки |
Irina (обсуждение | вклад) мНет описания правки |
||
Строка 1: | Строка 1: | ||
== Ключевые слова и синонимы == | == Ключевые слова и синонимы == | ||
Множественное выравнивание строк; глобальная задача выравнивания нескольких строк | |||
== Постановка задачи == | == Постановка задачи == | ||
Множественное выравнивание последовательностей является важной задачей вычислительной биологии. Она применяется в таких областях, как поиск высококонсервативных субрегионов в заданном наборе биологических последовательностей и вывод истории эволюции набора таксонов на основе связанных с ними биологических последовательностей (см., например, [6]). Был предложен ряд мер для оценки качества множественного выравнивания, однако до выхода работы Гасфилда ни для одной из этих мер не было известно эффективных методов вычисления оптимального выравнивания. В работе Гасфилда [5] приведены два вычислительно эффективных алгоритма | Множественное выравнивание последовательностей является важной задачей вычислительной биологии. Она применяется в таких областях, как поиск высококонсервативных субрегионов в заданном наборе биологических последовательностей и вывод истории эволюции набора таксонов на основе связанных с ними биологических последовательностей (см., например, [6]). Был предложен ряд мер для оценки качества множественного выравнивания, однако до выхода упомянутой работы Гасфилда ни для одной из этих мер не было известно эффективных методов вычисления оптимального выравнивания. В работе Гасфилда [5] приведены два вычислительно эффективных аппроксимационных алгоритма множественного выравнивания для двух мер с коэффициентом аппроксимации менее 2. Для одной из мер также получен рандомизированный алгоритм, который работает значительно быстрее и с высокой вероятностью выдает множественное выравнивание с малыми границами ошибки. В данной работе впервые были представлены аппроксимационные алгоритмы (с гарантированными границами ошибок) для этой задачи. | ||
правка