Аноним

Арифметическое кодирование для сжатия данных: различия между версиями

Материал из WEGA
м
Строка 103: Строка 103:




На шаге 2 необходимо вычислить только подынтервал, соответствующий событию <math>a_i</math>, которое действительно произошло. Для этого удобно использовать две «кумулятивные» вероятности: кумулятивную вероятность <math>P_C = \sum_{k = 1}^{i - 1} p_k</math> и следующую кумулятивную вероятность <math>P_N = P_C + p_i = \sum_{k = 1}^i p_k</math>. Новый подынтервал имеет вид <math>[L + P_C(H - L), L + P_N(H - L))</math>. Необходимость хранения и предоставления кумулятивных вероятностей требует от модели сложной структуры данных – например, как у Моффата [7] – особенно когда возможно более двух событий.
На шаге 2 необходимо вычислить только подынтервал, соответствующий событию <math>a_i</math>, которое фактически происходит. Для этого удобно использовать две «кумулятивные» вероятности: кумулятивную вероятность <math>P_C = \sum_{k = 1}^{i - 1} p_k</math> и следующую кумулятивную вероятность <math>P_N = P_C + p_i = \sum_{k = 1}^i p_k</math>. Новый подынтервал имеет вид <math>[L + P_C(H - L), L + P_N(H - L))</math>. Необходимость хранения и предоставления кумулятивных вероятностей требует от модели сложной структуры данных – например, как у Моффата [7] – особенно когда возможно намного больше двух событий.




'''Моделирование'''
'''Моделирование'''


Целью моделирования при статистическом сжатии данных является предоставление кодировщику вероятностной информации. Процесс моделирования состоит из структурного и вероятностного компонентов, каждый из которых может быть адаптивным (начиная с нейтральной модели, постепенно наращивать структуру и вероятности в зависимости от встречающихся событий), полуадаптивным (задается начальная модель, описывающая события, которые будут встречаться в данных, затем в процессе кодирования модель модифицируется так, чтобы она описывала только те события, которые еще предстоит закодировать) или статическим (задается начальная модель и используется без модификации в процессе кодирования).
Целью моделирования при статистическом сжатии данных является предоставление кодировщику вероятностной информации. Процесс моделирования состоит из структурного и вероятностного компонентов, каждый из которых может быть адаптивным (начиная с нейтральной модели, структура и вероятности постепенно наращиваются в зависимости от встречающихся событий), полуадаптивным (задается начальная модель, описывающая события, которые будут встречаться в данных, затем в процессе кодирования модель модифицируется так, чтобы она описывала только те события, которые еще предстоит закодировать) или статическим (задается начальная модель и используется без модификации в процессе кодирования).




4551

правка