Аноним

Алгоритмический дизайн механизмов: различия между версиями

Материал из WEGA
м
Строка 233: Строка 233:




'''Теорема 11 [34]. Зафиксируем функцию социального выбора <math>f: V \to A</math>, таких, что (1) A конечна, <math>|A| \ge 3</math>, и f отображается на A, и (2) <math>V_i = \mathfrak{R}^A</math> для всех i. Тогда f реализуема (в доминирующих стратегиях) тогда и только тогда, когда она является аффинным максимизатором.'''
'''Теорема 11 [34]. Зафиксируем функцию социального выбора <math>f: V \to A</math>, такую, что (1) A конечна, <math>|A| \ge 3</math>, и f отображается на A, и (2) <math>V_i = \mathfrak{R}^A</math> для всех i. Тогда функция f реализуема (в доминирующих стратегиях) тогда и только тогда, когда она является аффинным максимизатором.'''




Область V, которая удовлетворяет неравенству <math>V_i = \mathfrak{R}^A</math> для всех i, называется «неограниченной областью». Теорема утверждает, что если область неограниченная, выбрано не менее трех альтернатив, а множество A альтернатив конечное, то не может быть реализовано ничего, помимо аффинных максимизаторов.
Область V, которая удовлетворяет неравенству <math>V_i = \mathfrak{R}^A</math> для всех i, называется ''неограниченной областью''. Теорема утверждает, что если область неограниченная, выбрано не менее трех альтернатив, а множество альтернатив A конечное, то не может быть реализовано ничего, помимо аффинных максимизаторов.




Строка 242: Строка 242:




'''Теорема 12 [23]. Любой правдивый комбинаторный аукцион или многотоварный аукцион между двумя игроками, который всегда должен распределять все имеющиеся товары и который аппроксимирует благосостояние на коэффициент лучше 2, должен быть аффинным максимизатором.'''
'''Теорема 12 [23]. Любой правдивый комбинаторный аукцион или многотоварный аукцион между двумя игроками, который всегда должен распределять все имеющиеся товары и который аппроксимирует благосостояние с коэффициентом лучше 2, должен быть аффинным максимизатором.'''




Конечно, это далеко не полный ответ. Что произойдет, если игроков будет больше двух? Что будет, если часть предметов можно будет «выбросить»? Эти вопросы, а также более общий и абстрактный вопрос о характеристиках, все еще остаются открытыми.
Конечно, это далеко не полный ответ. Что произойдет, если игроков будет больше двух? Что изменится, если часть предметов можно будет «выбросить»? Эти вопросы, а также более общий и абстрактный вопрос о характеризации, все еще остаются открытыми.




4551

правка