Аноним

Алгоритмический дизайн механизмов: различия между версиями

Материал из WEGA
м
Строка 154: Строка 154:
(1) Неясно, как именно следует организовать правильное и точное распределение вероятностей с помощью детерминированного компьютера. Ситуация здесь отличается от ситуации в «обычных» алгоритмических условиях, где можно использовать различные методы дерандомизации, поскольку они в общем случае не несут в себе свойства правдивости.
(1) Неясно, как именно следует организовать правильное и точное распределение вероятностей с помощью детерминированного компьютера. Ситуация здесь отличается от ситуации в «обычных» алгоритмических условиях, где можно использовать различные методы дерандомизации, поскольку они в общем случае не несут в себе свойства правдивости.


(2) Даже если естественный источник случайности существует, нельзя улучшить качество фактического результата, повторив вычисления несколько раз (используя закон больших чисел). Подобное повторение разрушит правдивость. Таким образом, именно потому, что теоретико-игровые вопросы рассматриваются параллельно с вычислительными, важность детерминизма возрастает.
(2) Даже если естественный источник случайности существует, нельзя улучшить качество фактического исхода, повторив вычисления несколько раз (используя закон больших чисел). Подобное повторение разрушит правдивость. Таким образом, именно потому, что теоретико-игровые вопросы рассматриваются параллельно с вычислительными, важность детерминизма возрастает.




Строка 160: Строка 160:




Существует множество классов оценок, которые ограничивают возможные оценки некоторым разумным форматом (подробнее см. в [28]). Например, субаддитивные оценки таковы, что для любых двух пакетов <math>S, T \subseteq \Omega, v(S \cup T) \le v(S) + v(T)</math>. Такие классы демонстрируют гораздо лучшие гарантии аппроксимации; например, для субаддитивных оценок известна 2-аппроксимация с полиномиальным временем [16]. Однако ни для одного из этих классов не известен полиномиальный по времени правдивый механизм (рандомизированный или детерминированный) с постоянным коэффициентом аппроксимации.
Существует множество классов оценок, которые ограничивают возможные оценки некоторым разумным форматом (подробнее см. в [28]). Например, субаддитивные оценки таковы, что для любых двух пакетов <math>S, T \subseteq \Omega, v(S \cup T) \le v(S) + v(T)</math>. Такие классы демонстрируют гораздо лучшие гарантии аппроксимации; например, для субаддитивных оценок известна 2-аппроксимация с полиномиальным временем [16]. Однако ни для одного из этих классов не известен полиномиальный по времени правдивый механизм (рандомизированный или детерминированный) с константным коэффициентом аппроксимации.




'''Открытый вопрос № 4''': существуют ли полиномиальные по времени правдивые аппроксимации с постоянным коэффициентом для особых случаев комбинаторных аукционов, которые являются NP-полными?
'''Открытый вопрос № 4''': существуют ли полиномиальные по времени правдивые аппроксимации с константным коэффициентом для особых случаев комбинаторных аукционов, которые являются NP-полными?




Разумеется, максимизация доходов комбинаторных аукционах также является важной целью. Эта тема все еще слабо изучена, за некоторыми исключениями. Механизм [7] получает те же гарантии в отношении оптимального дохода. Улучшенные аппроксимации имеются для многотоварных аукционов (в которых все товары одинаковы) с ограниченными по бюджету игроками [12], а также для комбинаторных аукционов с неограниченным предложением с целеустремленными участниками [6].
Разумеется, максимизация доходов также является важной целью в комбинаторных аукционах. Эта тема все еще слабо изучена, за некоторыми исключениями. Механизм [7] получает те же гарантии в отношении оптимального дохода. Улучшенные аппроксимации имеются для многотоварных аукционов (в которых все товары одинаковы) с ограниченными по бюджету игроками [12], а также для комбинаторных аукционов с неограниченным предложением и целеустремленными участниками [6].




4551

правка