Аноним

Квантование цепей Маркова: различия между версиями

Материал из WEGA
Строка 105: Строка 105:


== Применение ==
== Применение ==
'''Различимость элементов'''
'''Различение элементов'''


Предположим, что даны элементы <math>x_1, ..., x_m \in \{ 1, ..., m \}</math> и нужно узнать, существуют ли i, j такие, что <math>x_i = x_j</math>. Сложность классического подхода к выполнению этого запроса равна <math>\Theta(m)</math>. Амбайнис [2] предложил (оптимальный) квантовый алгоритм запросов со сложностью <math>O(m^{2/3})</math>, использующий квантовое блуждание по графу Джонсона, состоящему из <math>m^{2/3}</math>-подмножеств <math>\{ 1, ..., m \}</math>, в котором подмножества, которые содержат i, j с <math>x_i = x_j</math>, помечены.
Предположим, что даны элементы <math>x_1, ..., x_m \in \{ 1, ..., m \}</math> и нужно узнать, существуют ли i, j такие, что <math>x_i = x_j</math>. Сложность классического подхода к выполнению этого запроса равна <math>\Theta(m)</math>. Амбайнис [2] предложил (оптимальный) квантовый алгоритм запросов со сложностью <math>O(m^{2/3})</math>, использующий квантовое блуждание по графу Джонсона, состоящему из <math>m^{2/3}</math>-подмножеств <math>\{ 1, ..., m \}</math>, в котором подмножества, которые содержат i, j с <math>x_i = x_j</math>, помечены.
Строка 112: Строка 112:
'''Поиск треугольника'''
'''Поиск треугольника'''


Предположим, дана матрица смежности A графа с n вершинами и требуется определить, содержит ли граф треугольник (т.е. клику размером 3), используя как можно меньше запросов к записям A. Сложность классического подхода к решению этой задачи равна <math>\Theta(n^2)</math>. Маньез, Санта и Шегеди [13] предложили алгоритм со сложностью <math>\tilde{O}(n^{1,3})</math>, адаптировав решение из [2]. Маньез и др. улучшили ее до <math>O(n^{1,3})</math> в работе [12].
Предположим, что дана матрица смежности A графа с n вершинами и требуется определить, содержит ли граф треугольник (т.е. клику размера 3), используя как можно меньше запросов к элементам A. Сложность классического подхода к решению этой задачи равна <math>\Theta(n^2)</math>. Маньез, Санта и Шегеди [13] предложили алгоритм со сложностью <math>\tilde{O}(n^{1,3})</math>, адаптировав решение из [2]. Маньез и др. улучшили ее до <math>O(n^{1,3})</math> в работе [12].




'''Верификация матричного произведения'''
'''Верификация матричного произведения'''


Предположим, даны три матрицы A, B, C размера <math>n \times n</math> и требуется определить, верно ли соотношение <math>AB \ne C</math> (то есть, существуют ли i,j такие, что <math>\sum_k A_{ik} B_{kj} \ne C_{ij}</math>), используя как можно меньше запросов к записям A, B и C. Сложность классического подхода к решению этой задачи равна <math>\Theta(n^2)</math>. Бурман и Спалек [5] предложили квантовый алгоритм выполнения запросов со сложностью <math>O(n^{5/3})</math>, используя результаты из [18].
Предположим, что даны три матрицы A, B, C размера <math>n \times n</math> и требуется определить, верно ли соотношение <math>AB \ne C</math> (то есть, существуют ли i,j такие, что <math>\sum_k A_{ik} B_{kj} \ne C_{ij}</math>), используя как можно меньше запросов к элементам A, B и C. Сложность классического подхода к решению этой задачи равна <math>\Theta(n^2)</math>. Бурман и Спалек [5] предложили квантовый алгоритм выполнения запросов со сложностью <math>O(n^{5/3})</math>, используя результаты из [18].




'''Проверка коммутативности группы'''
'''Проверка коммутативности группы'''


Предположим, что имеется группа типа «черный ящик», заданная k генераторами, и требуется определить, коммутативна ли эта группа, используя как можно меньше запросов к операции группового произведения (т. е. запросов вида «Чему равно произведение элементов g и h?»). Сложность классического подхода к решению этой задачи составляет <math>\Theta(n^2)</math> групповых операций. Маньез и Наяк [11] предложили (практически оптимальный) <math>\tilde{O}(k^{2/3})</math> квантовый алгоритм выполнения запросов путем блуждания по произведению двух графов, вершины которых являются (упорядоченными) l-кортежами различных генераторов, у которого вероятности перехода являются ненулевыми только там, где l-кортежи в двух конечных точках отличаются не более чем по одной координате.
Предположим, что имеется группа типа «черный ящик», заданная k генераторами, и требуется определить, коммутативна ли эта группа, используя как можно меньше запросов к операции группового произведения (т. е. запросов вида «Чему равно произведение элементов g и h?»). Сложность классического подхода к решению этой задачи составляет <math>\Theta(k)</math> групповых операций. Маньез и Наяк [11] предложили (практически оптимальный) <math>\tilde{O}(k^{2/3})</math> квантовый алгоритм выполнения запросов путем блуждания по произведению двух графов, вершины которых являются (упорядоченными) l-кортежами различных генераторов, у которого вероятности перехода являются ненулевыми только там, где l-кортежи в двух конечных точках отличаются не более чем по одной координате.


== Открытые вопросы ==
== Открытые вопросы ==
4551

правка