4511
правок
Irina (обсуждение | вклад) м (→Применение) |
Irina (обсуждение | вклад) |
||
(не показано 5 промежуточных версий этого же участника) | |||
Строка 3: | Строка 3: | ||
== Постановка задачи == | == Постановка задачи == | ||
Рассмотрим упорядоченную совокупность U и множество T <math> \subset</math> U, |T| = n. Целью является предварительная обработка T таким образом, чтобы можно было эффективно отвечать на следующий запрос: пусть задан элемент <math>x \in U</math>, требуется найти предка x, т. е. <math>max \{ y \in T | y < x \}</math>. Также можно рассмотреть динамическую задачу, когда элементы вставляются в T и удаляются из него. Обозначим за <math>t_q</math> время запроса, а за <math>t_u</math> – время обновления. | Рассмотрим упорядоченную совокупность U и множество T <math> \subset</math> U, |T| = n. Целью является предварительная обработка T таким образом, чтобы можно было эффективно отвечать на следующий запрос: пусть задан элемент <math>x \in U</math>, требуется найти предка <math>x</math>, т. е. <math>max \{ y \in T | y < x \}</math>. Также можно рассмотреть динамическую задачу, когда элементы вставляются в T и удаляются из него. Обозначим за <math>t_q</math> время выполнения запроса, а за <math>t_u</math> – время обновления. | ||
Строка 28: | Строка 28: | ||
'''Коммуникативные игры''': предположим, что у Алисы есть запрос ''x'', а у Боба – множество T. Они пытаются найти предка | '''Коммуникативные игры''': предположим, что у Алисы есть запрос ''x'', а у Боба – множество T. Они пытаются найти предка <math>x</math> с помощью <math>\tau</math> раундов коммуникации, где в каждом раунде Алиса посылает <math>m_A</math> бит, а Боб отвечает с использованием <math>m_B</math> бит. | ||
Этот подход может имитировать модель клеточного зонда, когда <math>m_B = b</math>, а <math>m_A</math> – логарифм от объема памяти. Тогда <math>\tau \le t_q</math>, и можно использовать коммуникационную сложность для получения нижних границ клеточного зонда. | Этот подход может имитировать модель клеточного зонда, когда <math>m_B = b</math>, а <math>m_A</math> – логарифм от объема памяти. Тогда <math>\tau \le t_q</math>, и можно использовать коммуникационную сложность для получения нижних границ клеточного зонда. | ||
Внешняя память: единицей доступа является страница, содержащая B слов по <math>\ell</math> бит каждое. B-деревья решают задачу со временем запроса и обновления <math>O(log_B \; n)</math>; этого также можно достичь, не обращая внимания на значение B ''(см. [[B-деревья без явного задания параметров кэша]])''. Модель клеточного зонда с <math>b = B \cdot \ell</math> сильнее данной модели. | '''Внешняя память:''' единицей доступа является страница, содержащая B слов по <math>\ell</math> бит каждое. B-деревья решают задачу со временем запроса и обновления <math>O(log_B \; n)</math>; этого также можно достичь, не обращая внимания на значение B ''(см. [[B-деревья без явного задания параметров кэша]])''. Модель клеточного зонда с <math>b = B \cdot \ell</math> сильнее данной модели. | ||
'''<math>AC^0</math>-RAM''': это вариант пословной RAM-машины, в котором допустимыми операциями являются функции, имеющие постоянную глубину, | '''<math>AC^0</math>-RAM''': это вариант пословной RAM-машины, в котором допустимыми операциями являются функции, имеющие постоянную глубину, с неограниченными схемами объединения по входу. Это исключает умножение из стандартного набора операций. | ||
Строка 42: | Строка 42: | ||
Логарифмическая граница для сравнительного поиска в наихудшем случае не особенно информативна, когда эффективность | Логарифмическая граница для сравнительного поиска в наихудшем случае не особенно информативна в ситуациях, когда важна эффективность. На практике при работе с огромными массивами данных стандартным подходом является использование B-деревьев и их вариантов. Решения, основанные на изобретательном использовании оперативной памяти, подходят для случаев, когда набор данных не особенно велик, но быстрое время выполнения запроса имеет решающее значение – как, например, в программных решениях для поиска информации об IP-адресах [7]. | ||
== Основные результаты == | == Основные результаты == | ||
Основываясь на длительной серии исследований, Петрашку и Торуп [15,16] в конечном итоге получили соответствующие верхние и нижние границы для статической задачи | Основываясь на длительной серии исследований, Петрашку и Торуп [15,16] в конечном итоге получили соответствующие верхние и нижние границы для статической задачи на моделях пословной RAM-машины, клеточного зонда, внешней памяти и коммуникативной игры. | ||
Строка 60: | Строка 60: | ||
\end{cases}</math> | \end{cases}</math> | ||
Эта граница достигается детерминированным алгоритмом запроса. Для любого пространства S структура данных может быть построена за время O(S) с помощью рандомизированного алгоритма, начиная с множества T, заданного в отсортированном порядке. Обновления выполняются за ожидаемое время <math>t_q + O(S/n)</math>. Таким образом, помимо нахождения элемента за один запрос | Эта граница достигается детерминированным алгоритмом запроса. Для любого пространства S структура данных может быть построена за время O(S) с помощью рандомизированного алгоритма, начиная с множества T, заданного в отсортированном порядке. Обновления выполняются за ожидаемое время <math>t_q + O(S/n)</math>. Таким образом, помимо нахождения элемента за один запрос о предке, обновления изменяют минимальную часть структуры данных. | ||
Нижние границы справедливы для мощной модели клеточного зонда и выполняются для рандомизированных алгоритмов. Когда <math>S \ge n^{1 + \varepsilon}</math>, оптимальный компромисс для коммуникативных игр совпадает с (1). Заметим, что случай <math>S = n^{1 + o(1)}</math> практически устраняется при сведении к коммуникационной сложности, поскольку сообщения Алисы зависят только от lg S. Таким образом, нет асимптотической разницы между <math>S = O(n)</math> и, скажем, <math>S = O(n^2)</math>. | Нижние границы справедливы для мощной модели клеточного зонда и выполняются даже для рандомизированных алгоритмов. Когда <math>S \ge n^{1 + \varepsilon}</math>, оптимальный компромисс для коммуникативных игр совпадает с (1). Заметим, что случай <math>S = n^{1 + o(1)}</math> практически устраняется при сведении к коммуникационной сложности, поскольку сообщения Алисы зависят только от lg S. Таким образом, нет асимптотической разницы между <math>S = O(n)</math> и, скажем, <math>S = O(n^2)</math>. | ||
Строка 126: | Строка 126: | ||
== Открытые вопросы == | == Открытые вопросы == | ||
Подход к реализации деревьев слияния с инструкциями | Подход к реализации деревьев слияния с инструкциями <math>AC^0</math> известен [2], но для других стратегий запросов это не так. Каков наилучший компромисс между запросами, достижимый для RAM-машины <math>AC^0</math>? В частности, может ли поиск ван Эмде Боаса быть реализован с помощью инструкций <math>AC^0</math>? | ||
Наконец, требуется ли запрос для обновления структуры предков? Иными словами, можно ли получить | Можно ли сделать время обновления детерминированным при решении динамической задачи? В частности, можно ли реализовать поиск ван Эмде Боаса с быстрым детерминированным обновлением? Это очень интересная задача, находящая применение в детерминированных словарях [14]. Кроме того, можно ли детерминированным образом обновлять узлы слияния за константное время? Атомарные кучи [11] достигают этого результата при поиске только среди <math>(lg \; n)^{\varepsilon}</math> элементов, а не <math>b^{\varepsilon}</math>. | ||
Наконец, требуется ли запрос для обновления структуры предков? Иными словами, можно ли получить <math>t_u = o(t_q)</math>, сохранив при этом эффективное время запроса? | |||
== См. также == | == См. также == |
правок