Аноним

Поиск предков: различия между версиями

Материал из WEGA
 
(не показано 5 промежуточных версий этого же участника)
Строка 3: Строка 3:


== Постановка задачи ==
== Постановка задачи ==
Рассмотрим упорядоченную совокупность U и множество T <math> \subset</math> U, |T| = n. Целью является предварительная обработка T таким образом, чтобы можно было эффективно отвечать на следующий запрос: пусть задан элемент <math>x \in U</math>, требуется найти предка x, т. е. <math>max \{ y \in T | y < x \}</math>. Также можно рассмотреть динамическую задачу, когда элементы вставляются в T и удаляются из него. Обозначим за <math>t_q</math> время запроса, а за <math>t_u</math> – время обновления.
Рассмотрим упорядоченную совокупность U и множество T <math> \subset</math> U, |T| = n. Целью является предварительная обработка T таким образом, чтобы можно было эффективно отвечать на следующий запрос: пусть задан элемент <math>x \in U</math>, требуется найти предка <math>x</math>, т. е. <math>max \{ y \in T | y < x \}</math>. Также можно рассмотреть динамическую задачу, когда элементы вставляются в T и удаляются из него. Обозначим за <math>t_q</math> время выполнения запроса, а за <math>t_u</math> – время обновления.




Строка 28: Строка 28:




'''Коммуникативные игры''': предположим, что у Алисы есть запрос ''x'', а у Боба – множество T. Они пытаются найти предка ''x'' в результате <math>\tau</math> раундов коммуникации, где в каждом раунде Алиса посылает <math>m_A</math> бит, а Боб отвечает с помощью <math>m_B</math> бит.
'''Коммуникативные игры''': предположим, что у Алисы есть запрос ''x'', а у Боба – множество T. Они пытаются найти предка <math>x</math> с помощью <math>\tau</math> раундов коммуникации, где в каждом раунде Алиса посылает <math>m_A</math> бит, а Боб отвечает с использованием <math>m_B</math> бит.


Этот подход может имитировать модель клеточного зонда, когда <math>m_B = b</math>, а <math>m_A</math> – логарифм от объема памяти. Тогда <math>\tau \le t_q</math>, и можно использовать коммуникационную сложность для получения нижних границ клеточного зонда.
Этот подход может имитировать модель клеточного зонда, когда <math>m_B = b</math>, а <math>m_A</math> – логарифм от объема памяти. Тогда <math>\tau \le t_q</math>, и можно использовать коммуникационную сложность для получения нижних границ клеточного зонда.




Внешняя память: единицей доступа является страница, содержащая B слов по <math>\ell</math> бит каждое. B-деревья решают задачу со временем запроса и обновления <math>O(log_B \; n)</math>; этого также можно достичь, не обращая внимания на значение B ''(см. [[B-деревья без явного задания параметров кэша]])''. Модель клеточного зонда с <math>b = B \cdot \ell</math> сильнее данной модели.
'''Внешняя память:''' единицей доступа является страница, содержащая B слов по <math>\ell</math> бит каждое. B-деревья решают задачу со временем запроса и обновления <math>O(log_B \; n)</math>; этого также можно достичь, не обращая внимания на значение B ''(см. [[B-деревья без явного задания параметров кэша]])''. Модель клеточного зонда с <math>b = B \cdot \ell</math> сильнее данной модели.




'''<math>AC^0</math>-RAM''': это вариант пословной RAM-машины, в котором допустимыми операциями являются функции, имеющие постоянную глубину, неограниченные схемы объединения по входу. Это исключает умножение из стандартного набора операций.
'''<math>AC^0</math>-RAM''': это вариант пословной RAM-машины, в котором допустимыми операциями являются функции, имеющие постоянную глубину, с неограниченными схемами объединения по входу. Это исключает умножение из стандартного набора операций.




Строка 42: Строка 42:




Логарифмическая граница для сравнительного поиска в наихудшем случае не особенно информативна, когда эффективность особенно важна. На практике при работе с огромными массивами данных стандартным подходом является использование B-деревьев и их вариантов. Решения, основанные на изобретательном использовании оперативной памяти, подходят для случаев, когда набор данных не особенно велик, но быстрое время выполнения запроса имеет решающее значение – как, например, в программных решениях для поиска информации об IP-адресах [7].
Логарифмическая граница для сравнительного поиска в наихудшем случае не особенно информативна в ситуациях, когда важна эффективность. На практике при работе с огромными массивами данных стандартным подходом является использование B-деревьев и их вариантов. Решения, основанные на изобретательном использовании оперативной памяти, подходят для случаев, когда набор данных не особенно велик, но быстрое время выполнения запроса имеет решающее значение – как, например, в программных решениях для поиска информации об IP-адресах [7].


== Основные результаты ==
== Основные результаты ==
Основываясь на длительной серии исследований, Петрашку и Торуп [15,16] в конечном итоге получили соответствующие верхние и нижние границы для статической задачи в моделях пословной RAM-машины, клеточного зонда, внешней памяти и коммуникативной игры.
Основываясь на длительной серии исследований, Петрашку и Торуп [15,16] в конечном итоге получили соответствующие верхние и нижние границы для статической задачи на моделях пословной RAM-машины, клеточного зонда, внешней памяти и коммуникативной игры.




Строка 60: Строка 60:
\end{cases}</math>
\end{cases}</math>


Эта граница достигается детерминированным алгоритмом запроса. Для любого пространства S структура данных может быть построена за время O(S) с помощью рандомизированного алгоритма, начиная с множества T, заданного в отсортированном порядке. Обновления выполняются за ожидаемое время <math>t_q + O(S/n)</math>. Таким образом, помимо нахождения элемента за один запрос предка, обновления изменяют минимальную часть структуры данных.
Эта граница достигается детерминированным алгоритмом запроса. Для любого пространства S структура данных может быть построена за время O(S) с помощью рандомизированного алгоритма, начиная с множества T, заданного в отсортированном порядке. Обновления выполняются за ожидаемое время <math>t_q + O(S/n)</math>. Таким образом, помимо нахождения элемента за один запрос о предке, обновления изменяют минимальную часть структуры данных.




Нижние границы справедливы для мощной модели клеточного зонда и выполняются для рандомизированных алгоритмов. Когда <math>S \ge n^{1 + \varepsilon}</math>, оптимальный компромисс для коммуникативных игр совпадает с (1). Заметим, что случай <math>S = n^{1 + o(1)}</math> практически устраняется при сведении к коммуникационной сложности, поскольку сообщения Алисы зависят только от lg S. Таким образом, нет асимптотической разницы между <math>S = O(n)</math> и, скажем, <math>S = O(n^2)</math>.
Нижние границы справедливы для мощной модели клеточного зонда и выполняются даже для рандомизированных алгоритмов. Когда <math>S \ge n^{1 + \varepsilon}</math>, оптимальный компромисс для коммуникативных игр совпадает с (1). Заметим, что случай <math>S = n^{1 + o(1)}</math> практически устраняется при сведении к коммуникационной сложности, поскольку сообщения Алисы зависят только от lg S. Таким образом, нет асимптотической разницы между <math>S = O(n)</math> и, скажем, <math>S = O(n^2)</math>.




Строка 126: Строка 126:


== Открытые вопросы ==
== Открытые вопросы ==
Подход к реализации деревьев слияния с инструкциями AC0 известен [2], но для других стратегий запросов это не так. Каков наилучший компромисс между запросами, достижимый для RAM-машины AC0? В частности, может ли поиск ван Эмде Боаса быть реализован с помощью инструкций AC0?
Подход к реализации деревьев слияния с инструкциями <math>AC^0</math> известен [2], но для других стратегий запросов это не так. Каков наилучший компромисс между запросами, достижимый для RAM-машины <math>AC^0</math>? В частности, может ли поиск ван Эмде Боаса быть реализован с помощью инструкций <math>AC^0</math>?
Можно ли сделать время обновления детерминированным при решении динамической задачи? В частности, можно ли реализовать поиск ван Эмде Боаса с быстрым детерминированным обновлением? Это очень интересная задача, находящая применение в детерминированных словарях [ ]. Кроме того, можно ли детерминированным образом обновлять узлы слияния за константное время? Атомарные кучи [11] достигают этого результата при поиске только среди (lg n)" элементов, а не b".




Наконец, требуется ли запрос для обновления структуры предков? Иными словами, можно ли получить tu = o(tq), сохранив при этом эффективное время запроса?
Можно ли сделать время обновления детерминированным при решении динамической задачи? В частности, можно ли реализовать поиск ван Эмде Боаса с быстрым детерминированным обновлением? Это очень интересная задача, находящая применение в детерминированных словарях [14]. Кроме того, можно ли детерминированным образом обновлять узлы слияния за константное время? Атомарные кучи [11] достигают этого результата при поиске только среди <math>(lg \; n)^{\varepsilon}</math> элементов, а не <math>b^{\varepsilon}</math>.
 
 
Наконец, требуется ли запрос для обновления структуры предков? Иными словами, можно ли получить <math>t_u = o(t_q)</math>, сохранив при этом эффективное время запроса?


== См. также ==
== См. также ==
4511

правок