Аноним

Независимые множества в случайных графах пересечений: различия между версиями

Материал из WEGA
Строка 18: Строка 18:


== Основные результаты ==
== Основные результаты ==
Следующие теоремы рассматривают существование независимых множеств вершин мощности k в случайных графах пересечений. Доказательство теоремы 1 использует факт линейности математического ожидания суммы случайных переменных.
Следующие теоремы рассматривают существование независимых множеств вершин мощности k в случайных графах пересечений общего вида. Доказательство теоремы 1 использует факт линейности математического ожидания суммы случайных переменных.




Строка 32: Строка 32:
'''где <math>E[X^{(k)}]</math> – среднее число независимых множеств размера k,'''
'''где <math>E[X^{(k)}]</math> – среднее число независимых множеств размера k,'''


'''а <math>\gamma(k, s) = \prod_{i=1}^m \Big( (1 - p_i)^{k - s} + (k - s)p_i (1 - p_i)^{k - s - 1} \Big) \Big( 1 - \frac{sp_i}{1 + (k - 1) p_i} \Big).</math>'''
'''а <math>\gamma(k, s) = \prod_{i=1}^m \Big( (1 - p_i)^{k - s} + (k - s)p_i (1 - p_i)^{k - s - 1} \Big( 1 - \frac{sp_i}{1 + (k - 1) p_i} \Big) \Big).</math>'''




Для доказательства теоремы 2 вначале запишем дисперсию в виде суммы ковариаций, а затем применим технику сжатия вершин, выполняющую слияние нескольких вершин в одну супер-вершину со схожим вероятностным поведением, для вычисления ковариаций. При помощи метода моментов второго порядка (см. [1]) можно вычислить порог для существования независимых множеств размера.
Для доказательства теоремы 2 вначале запишем дисперсию в виде суммы ковариаций, а затем применим технику сжатия вершин, выполняющую слияние нескольких вершин в одну супер-вершину со схожим вероятностным поведением, для вычисления ковариаций. При помощи метода моментов второго порядка [1] можно вычислить порог для существования независимых множеств размера k.




4551

правка