Аноним

Маршрутизация в геометрических сетях: различия между версиями

Материал из WEGA
м
Строка 17: Строка 17:




''Геометрическая маршрутизация'' представляет собой маршрутизацию из ''вершины-источника'' s к ''вершине-адресату'' t с использованием информации о географическом местоположении, то есть координат вершин. Предполагается, что вершина-источник знает координаты вершины-адресата. Для получения этой информации вершиной-источником служит специализированный внешний сервис локализации местоположения [ ]. Протокол маршрутизации состоит из последовательности этапов коммуникации. На каждом этапе протоколом маршрутизации определяются как метка уникальной передающей вершины, так и метка одной из вершин-соседей, от которой мы ожидаем принятия передаваемого сообщения. Геометрическая маршрутизация является однородной в том смысле, что при принятии решения о том, кому из соседей переслать сообщение, все вершины выполняют один и тот же протокол.
''Геометрическая маршрутизация'' представляет собой маршрутизацию из ''вершины-источника'' s к ''вершине-адресату'' t с использованием информации о географическом местоположении, то есть координат вершин. Предполагается, что вершина-источник знает координаты вершины-адресата. Для получения этой информации вершиной-источником служит специализированный внешний сервис локализации местоположения [8]. Протокол маршрутизации состоит из последовательности этапов коммуникации. На каждом этапе протоколом маршрутизации определяются как метка уникальной передающей вершины, так и метка одной из вершин-соседей, от которой мы ожидаем принятия передаваемого сообщения. Геометрическая маршрутизация является однородной в том смысле, что при принятии решения о том, кому из соседей переслать сообщение, все вершины выполняют один и тот же протокол.




Рассматриваются три класса геометрической маршрутизации: ''онлайновая геометрическая маршрутизация'', ''оффлайновая геометрическая маршрутизация'' и ''динамическая геометрическая маршрутизация''. Во всех трех классах особое внимание уделяется построению маршрута сообщения из истоника в точку назначения, включающего минимально возможное количество этапов коммуникации. Заметим, что количество этапов коммуникации соответствует общему числу передач. Таким образом, минимизируя количество этапов коммуникации, мы уменьшаем и количество передач, способствуя экономии энергии. Далее рассмотрим список комбинаторных и алгоритмических определений, часто используемых контексте геометрической маршрутизации.
Рассматриваются три класса геометрической маршрутизации: ''онлайновая геометрическая маршрутизация'', ''оффлайновая геометрическая маршрутизация'' и ''динамическая геометрическая маршрутизация''. Во всех трех классах особое внимание уделяется построению маршрута сообщения из источника к адресату, включающего минимально возможное количество этапов коммуникации. Заметим, что количество этапов коммуникации соответствует общему числу передач. Таким образом, минимизируя количество этапов коммуникации, мы уменьшаем и количество передач, способствуя экономии энергии. Далее рассмотрим список комбинаторных и алгоритмических определений, часто используемых контексте геометрической маршрутизации.




4511

правок