Аноним

Маршрутизация: различия между версиями

Материал из WEGA
м
Строка 69: Строка 69:
В 2002 году Рэкке построил полилогарифмически-конкурентный рандомизированный алгоритм для неориентированных сетей общего вида. Точнее говоря, он доказал, что для любого значения спроса существует маршрутизация, такая, что максимальная нагруженность ребра не более чем в polylog(n) раз превышает оптимальную для этого спроса [12]. Азар и др. в своей работе дополнили этот результат, предложив полиномиальный метод для расчета оптимальной маршрутизации в отсутствие информации для сети. Они также доказали, что для ориентированных сетей не существует логарифмического коэффициента эффективности маршрутизации в отсутствие информации. Недавно Хаджиагаи и др. предложили алгоритм маршрутизации в отсутствие информации, являющийся <math>O(log^2 n)</math>-конкурентным с высокой вероятностью в ориентированных сетях [8].
В 2002 году Рэкке построил полилогарифмически-конкурентный рандомизированный алгоритм для неориентированных сетей общего вида. Точнее говоря, он доказал, что для любого значения спроса существует маршрутизация, такая, что максимальная нагруженность ребра не более чем в polylog(n) раз превышает оптимальную для этого спроса [12]. Азар и др. в своей работе дополнили этот результат, предложив полиномиальный метод для расчета оптимальной маршрутизации в отсутствие информации для сети. Они также доказали, что для ориентированных сетей не существует логарифмического коэффициента эффективности маршрутизации в отсутствие информации. Недавно Хаджиагаи и др. предложили алгоритм маршрутизации в отсутствие информации, являющийся <math>O(log^2 n)</math>-конкурентным с высокой вероятностью в ориентированных сетях [8].


Специальная онлайновая модель исследовалась в работе [5], авторы которой определили так называемую формулировку «повторяющейся игры», в которой алгоритм может ежедневно выбирать новый маршрут. Это означает, что алгоритм не имеет информации о спросе, который возникнет на следующий день. Авторы представили <math>1 + \varepsilon</math>-конкурентный алгоритм для этой модели.
Специальная онлайновая модель исследовалась в работе [5], авторы которой определили так называемую формулировку «повторяющейся игры», в которой алгоритм может ежедневно выбирать новый маршрут. Это означает, что алгоритм не имеет информации о спросе, который возникнет на следующий день. Авторы предложили <math>1 + \varepsilon</math>-конкурентный алгоритм для этой модели.


Для адаптивного случая существуют более эффективные алгоритмы, например, представленные в [2]. Рагхаван и Томпсон предложили эффективный алгоритм для оффлайнового случая [13].
Для адаптивного случая существуют более эффективные алгоритмы, например, представленные в [2]. Рагхаван и Томпсон предложили эффективный алгоритм для оффлайнового случая [13].
4551

правка