Аноним

Cograph: различия между версиями

Материал из WEGA
нет описания правки
(Новая страница: «''Cograph''' --- кограф. '''1.''' <math>G</math> is a '''cograph''' if <math>G</math> is the ''comparability graph'' of a ''series-parallel poset''. The clas…»)
 
Нет описания правки
 
Строка 1: Строка 1:
''Cograph''' --- кограф.  
'''Cograph''' — ''[[кограф]]''.  


'''1.''' <math>G</math> is a '''cograph''' if <math>G</math> is the ''comparability graph'' of a ''series-parallel poset''. The class of cographs should not be confused
'''1.''' <math>\,G</math> is a '''cograph''' if <math>\,G</math> is the ''[[comparability graph]]'' of a ''[[series-parallel poset]]''. The class of cographs should not be confused
with the class of series-parallel graphs.
with the class of series-parallel graphs.


The following recursive definition describes also the cographs:
The following recursive definition describes also the cographs:


(1) a one-vertex graph is a cograph;.
(1) a one-[[vertex]] [[graph, undirected graph, nonoriented graph|graph]] is a cograph;.


(2) if <math>G_{1} = (V_{1}, E_{1})</math> and <math>G_{2} = (V_{2}, E_{2})</math> are
(2) if <math>\,G_{1} = (V_{1}, E_{1})</math> and <math>\,G_{2} = (V_{2}, E_{2})</math> are
cographs, then <math>G = (V_{1} \cup V_{2}, E_{1} \cup E_{2})</math> is also a
cographs, then <math>G = (V_{1} \cup V_{2}, E_{1} \cup E_{2})</math> is also a
cograph;
cograph;


(3) if <math>G = (V, E)</math> is a cograph, then <math>\bar{G} = (V, \bar{E})</math> is also
(3) if <math>\,G = (V, E)</math> is a cograph, then <math>\bar{G} = (V, \bar{E})</math> is also
a cograph;
a cograph;


(4) there are no other cographs.
(4) there are no other cographs.


'''2.''' A '''cograph'''  is a graph without <math>P_{4}</math>.
'''2.''' A '''cograph'''  is a graph without <math>\,P_{4}</math>.
 
==Литература==
 
* Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.