Аноним

Mutually graceful trees: различия между версиями

Материал из WEGA
нет описания правки
(Новая страница: «'''Mutually graceful trees''' --- взаимно грациозные деревья. Let <math>T_{p}</math> and <math>\theta_{p}</math> be two trees with vertices…»)
 
Нет описания правки
 
Строка 5: Строка 5:
be called ''' mutually graceful''' if it satisfies the following
be called ''' mutually graceful''' if it satisfies the following
conditions:
conditions:
 
<math>
\begin{equation} \{f(t_{i})\} \cup \{f(u_{i})\} = \{1, 2, \ldots,
\{f(t_{i})\} \cup \{f(u_{i})\} = \{1, 2, \ldots,
2q\} \mbox{ for } i = 1, 2, \ldots, q(=p-1);\end{equation}
2q\} \mbox{ for } i = 1, 2, \ldots, q(=p-1);
\begin{equation} f(t_{p}) = 2q + 1, f(u_{p}) = 2q + 2; \end{equation}
</math>
 
<math>
f(t_{p}) = 2q + 1, f(u_{p}) = 2q + 2;  
</math>
and the vertex labels of each of the two trees --- with exception of
and the vertex labels of each of the two trees --- with exception of
the highest ones defined by (2) --- are at the same time the induced
the highest ones defined by (2) --- are at the same time the induced
47

правок