4551
правка
Irina (обсуждение | вклад) |
Irina (обсуждение | вклад) мНет описания правки |
||
Строка 6: | Строка 6: | ||
Предположим, что каждое ребро (u, v) графа G реализовано в видео отрезка прямой, соединяющей точки u и v. Граф G называется [[ | Предположим, что каждое ребро (u, v) графа G реализовано в видео отрезка прямой, соединяющей точки u и v. Граф G называется [[плоский граф|плоским]], если его ребра пересекаются только в точках их общих вершин. | ||
Строка 12: | Строка 12: | ||
Задача 1. Определить наименьшее вещественное число t > 1, для которого выполняется следующее утверждение: | '''Задача 1'''. Определить наименьшее вещественное число t > 1, для которого выполняется следующее утверждение: | ||
Для каждого множества S из n точек на плоскости существует плоский граф с множеством вершин S, являющийся t-остовом | Для каждого множества S из n точек на плоскости существует плоский граф с множеством вершин S, являющийся t-остовом S. Разработать эффективный алгоритм построения такого плоского t-остова. | ||
Задача 2. Определить наименьшее целое положительное число D, для которого выполняется следующее утверждение: | '''Задача 2'''. Определить наименьшее целое положительное число D, для которого выполняется следующее утверждение: | ||
Существует константное значение t, такое, что для каждого множества S из n точек на плоскости существует плоский граф с множеством вершин S и максимальной степенью, не превышающей D, который является t-остовом | Существует константное значение t, такое, что для каждого множества S из n точек на плоскости существует плоский граф с множеством вершин S и максимальной степенью, не превышающей D, который является t-остовом S. Разработать эффективный алгоритм построения такого плоского t-остова. | ||
== Основные результаты == | == Основные результаты == | ||
Строка 31: | Строка 31: | ||
Левкопулос и Лингас [14] обобщили результат теоремы 1: Предположим, что дана триангуляция Делоне для множества S. Тогда для любого вещественного числа r > 0 за время O(n) можно построить плоский граф G с множеством вершин S, являющийся t-остовом | Левкопулос и Лингас [14] обобщили результат теоремы 1: Предположим, что дана триангуляция Делоне для множества S. Тогда для любого вещественного числа r > 0 за время O(n) можно построить плоский граф G с множеством вершин S, являющийся t-остовом S, где <math>t = (1 + 1/r) 4 \pi \sqrt{3}/9</math>, совокупная длина ребер которого будет не более чем в 2r + 1 раз превышать вес остовного дерева для S. | ||
Строка 37: | Строка 37: | ||
'''Теорема 2. Пусть S – конечное множество точек на плоскости. Рассмотрим триангуляцию Делоне для S, основанную на выпуклой функции расстояния, определяемой при помощи равностороннего треугольника. Этот плоский граф является 2-остовом | '''Теорема 2. Пусть S – конечное множество точек на плоскости. Рассмотрим триангуляцию Делоне для S, основанную на выпуклой функции расстояния, определяемой при помощи равностороннего треугольника. Этот плоский граф является 2-остовом S (в котором длины путей измеряются при помощи евклидовой метрики).''' | ||
правка