Аноним

Критический диапазон для беспроводных сетей: различия между версиями

Материал из WEGA
м
Строка 64: Строка 64:




Теорема 4. ii{s) = lns + 2 (k + 1)lnlns + | (s). Если lims!1 | (s) = % для некоторого f 2 R, то 1, и 1 - P (I) < lim Pr |X w(s)sl < 1 1 - P (I) <  lim Pr \K's  (J) 1 <        1    : lims!1 | (s) = 1; то
Теорема 4. Пусть <math>\mu (s) = ln \; s + 2 (k + 1) \; ln \; ln \; s + \xi(s)</math>. Если <math>lim_{s \to \infty} \xi(s) = \xi \;</math> для некоторого <math>\xi \in \mathbb{R} \;</math>, то 1, и 1 - P (I) < lim Pr |X w(s)sl < 1 1 - P (I) <  lim Pr \K's  (J) 1 <        1    : lims!1 | (s) = 1; то
Если lims!1 f (s) = - infty то 0: Д^ Pr [KsMs)s] = Дт Pr [K'sMs)s] =
Если lims!1 f (s) = - infty то 0: Д^ Pr [KsMs)s] = Дт Pr [K'sMs)s] =


4551

правка