Аноним

Компоновка схемы: различия между версиями

Материал из WEGA
м
Строка 107: Строка 107:
(4) <math>\frac{\partial ^2 \phi(x, y)}{\partial x^2} + \frac{\partial ^2 \phi(x, y)}{\partial y^2} - \epsilon \phi(x, y) = D(x, y), (x, y) \in R \frac{\partial \phi}{\partial v} = 0, (x, y)</math> на границе R,
(4) <math>\frac{\partial ^2 \phi(x, y)}{\partial x^2} + \frac{\partial ^2 \phi(x, y)}{\partial y^2} - \epsilon \phi(x, y) = D(x, y), (x, y) \in R \frac{\partial \phi}{\partial v} = 0, (x, y)</math> на границе R,


где <math>\epsilon > 0 \;</math>, v – внешняя единичная нормаль, R представляет неподвижный контур, а D(x,y) – непрерывную функцию плотности. Граничные условия <math>\frac{\partial \phi}{\partial v} = 0 \;</math> диктуют, чтобы силы, направленные вовне неподвижного контура, были установлены равными нулю – этим данный подход отличается от метода Пуассона, в котором предполагается, что сила становится равной нулю на бесконечности. Значение <math>\phi_{i, j} \;</math> в центре каждого контейнера <math>B_{ij} \;</math> вычисляется посредством дискретизации уравнения (4) методом конечных разностей. Ограничения плотности заменяются требованием <math>\phi_{ij} = \hat{K} \; \forall B_{ij} \in B</math>, где <math>\hat{K} \;</math> – масштабированный представитель целевой функции плотности K. Задача минимизации длины проводов с учетом сглаженных ограничений плотности может быть решена при помощи алгоритма Узавы. В случае квадратичной функции длины провода этот алгоритм представляет собой обобщение метода распространения под действием силы.
где <math>\epsilon > 0 \;</math>, v – внешняя единичная нормаль, R представляет неподвижный контур, а D(x,y) – непрерывную функцию плотности. Граничные условия <math>\frac{\partial \phi}{\partial v} = 0 \;</math> диктуют, чтобы силы, направленные вовне неподвижного контура, были установлены равными нулю – этим данный подход отличается от метода Пуассона, в котором предполагается, что сила становится равной нулю на бесконечности. Значение <math>\phi_{i, j} \;</math> в центре каждого контейнера <math>B_{ij} \;</math> вычисляется посредством дискретизации уравнения (4) методом конечных разностей. Ограничения плотности заменяются требованием <math>\phi_{ij} = \hat{K}, \; \forall B_{ij} \in B</math>, где <math>\hat{K} \;</math> – масштабированный представитель целевой функции плотности K. Задача минимизации длины проводов с учетом сглаженных ограничений плотности может быть решена при помощи алгоритма Узавы. В случае квадратичной функции длины провода этот алгоритм представляет собой обобщение метода распространения под действием силы.




Распространение на основе потенциальной функции
'''Распространение на основе потенциальной функции'''


Целевые ограничения плотности могут удовлетворяться также при помощи штрафной функции. Площадь, присвоенная контейнеру Bij вершиной vi, представлена колоколообразной функцией Potential(vi ; Bij). Из-за использования кусочно-линейных квадратичных функций потенциальная функция оказывается невыпуклой, зато гладкой и дифференцируемой [6]. Штрафной член, задаваемый соотношением
Целевые ограничения плотности могут удовлетворяться также при помощи штрафной функции. Площадь, присвоенная контейнеру <math>B_{ij} \;</math> вершиной <math>v_i \;</math>, представлена колоколообразной функцией <math>Potential(v_i, B_{ij}) \;</math>. Из-за использования кусочно-линейных квадратичных функций потенциальная функция оказывается невыпуклой, зато гладкой и дифференцируемой [6]. Штрафной член, задаваемый соотношением
E
 
vi2Vh
(5) <math>Penalty = \sum_{B_{ij} \in B} \bigg( \sum_{v_i \in V_h} Potential(v_i, B_{ij}) - K \bigg)^2 \;</math>
(5)
Penalty = ( Potential(vi; B,7)-ie)


может сочетаться с аппроксимацией длины проводов, в результате чего получаем неограниченную задачу оптимизации, которая решается при помощи эффективного метода сопряженных градиентов [6].
может сочетаться с аппроксимацией длины проводов, в результате чего получаем неограниченную задачу оптимизации, которая решается при помощи эффективного метода сопряженных градиентов [6].
4551

правка