Аноним

(t,i,j)-Cover: различия между версиями

Материал из WEGA
нет описания правки
(Новая страница: «'''<math>(t,i,j)</math>-Cover''' --- <math>(t,i,j)</math>-покрытие. Let <math>G = (V(G),E(G))</math> be a graph. The set <math>S</math> of vertices is call…»)
 
Нет описания правки
Строка 1: Строка 1:
'''<math>(t,i,j)</math>-Cover''' --- <math>(t,i,j)</math>-покрытие.  
'''<math>(t,i,j)</math>-Cover''' — ''[[(t,i,j)-покрытие|<math>(t,i,j)</math>-покрытие]].''


Let <math>G = (V(G),E(G))</math> be a graph. The set <math>S</math> of vertices is called a
Let <math>\,G = (V(G),E(G))</math> be a [[graph, undirected graph, nonoriented graph|graph]]. The set <math>\,S</math> of [[vertex|vertices]] is called a '''<math>\,(t,i,j)</math>-cover''' if every element of <math>\,S</math> belongs to exactly <math>\,i</math> balls of radius <math>\,t</math> centered at elements of <math>\,S</math> and every element of <math>\,V \setminus S</math> belongs to exactly <math>\,j</math> balls of radius <math>\,t</math> centered at elements of <math>\,S</math>.
'''<math>(t,i,j)</math>-cover''' if every element of <math>S</math> belongs to exactly <math>i</math>
 
balls of radius <math>t</math> centered at elements of <math>S</math> and every element
==Литература==
of <math>V \setminus S</math> belongs to exactly <math>j</math> balls of radius <math>t</math> centered
 
at elements of <math>S</math>.
* Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.