Аноним

Преобразование Барроуза-Уилера: различия между версиями

Материал из WEGA
Строка 130: Строка 130:


== Применение ==
== Применение ==
После выхода основополагающей работы Барроуза и Уилера многие исследователи предложили собственные алгоритмы сжатия на базе bwt (см. [4, 5] и ссылки в этих статьях). Особенно интересны в практическом плане результаты работы [ ], демонстрирующие, что преобразование bwt может быть использовано для разработки «[[Усиление_степени_сжатия_текста|усилителей сжатия]]» (или механизмов повышения степени сжатия), которые служат инструментов повышения эффективности других алгоритмов сжатия вполне определенным и измеримым образом.
Еще одной важной областью применения bwt является разработка сжатых полнотекстовых индексов [ ]. Эти индексы используют взаимосвязь между bwt и суффиксным массивом для формирования сжатого представления строки, поддерживающего эффективные поиск и извлечение вхождений произвольных шаблонов.
== Открытые вопросы ==
Помимо исследования эффективности алгоритмов сжатия на базе bwt, открытым остается весьма важный с практической точки зрения вопрос об эффективности использования памяти при выполнении bwt. Пусть дана строка s длины n над алфавитом S; s и 5 = bwt(s) требуют O(nlog j £ j) бит. К сожалению, алгоритмы с линейным временем выполнения, представленные на рис. 2, используют дополнительные массивы (sa и psi), для хранения которых требуется 0(n log n) бит. Это налагает серьезные ограничения на размер самой большой матрицы bwt, которую можно вычислить в оперативной памяти. Алгоритмы обращения bwt, эфективно использующие память, были предложены в литературе, посвященной индексации сжатого текста [ ], однако задача эффективного использования времени и памяти преобразованием bwt по-прежнему остается нерешенной, хотя для нее были получены обнадеживающие предварительные результаты [8, 10, 13].
Помимо исследования эффективности алгоритмов сжатия на базе bwt, открытым остается весьма важный с практической точки зрения вопрос об эффективности использования памяти при выполнении bwt. Пусть дана строка s длины n над алфавитом S; s и 5 = bwt(s) требуют O(nlog j £ j) бит. К сожалению, алгоритмы с линейным временем выполнения, представленные на рис. 2, используют дополнительные массивы (sa и psi), для хранения которых требуется 0(n log n) бит. Это налагает серьезные ограничения на размер самой большой матрицы bwt, которую можно вычислить в оперативной памяти. Алгоритмы обращения bwt, эфективно использующие память, были предложены в литературе, посвященной индексации сжатого текста [ ], однако задача эффективного использования времени и памяти преобразованием bwt по-прежнему остается нерешенной, хотя для нее были получены обнадеживающие предварительные результаты [8, 10, 13].


4551

правка