Аноним

Аппроксимация метрических пространств древесными метриками: различия между версиями

Материал из WEGA
м
Строка 15: Строка 15:




Пусть дана метрика (V, d); распределение <math>\mathcal{D} \;</math> над древесной метрикой для V ''<math>\alpha \;</math>-вероятностно аппроксимирует d'', если для каждой древесной метрики <math>d_T \in \mathcal{D} \;</math>, <math>d_T(u, v) \ge d(u, v) \;</math> и <math>E_{d_T \in D} [d_T(u, v)] \le \alpha \cdot d(u, v) \;</math> для любых <math>u, v \in V \;</math>. Значение <math>\alpha \;</math> называется [[невязка|невязкой]] аппроксимации.
Пусть дана метрика (V, d); распределение <math>\mathcal{D} \;</math> над древесной метрикой для V ''<math>\alpha \;</math>-вероятностно аппроксимирует d'', если для каждой древесной метрики <math>d_T \in \mathcal{D} \;</math> верно <math>d_T(u, v) \ge d(u, v) \;</math> и <math>E_{d_T \in D} [d_T(u, v)] \le \alpha \cdot d(u, v) \;</math> для любых <math>u, v \in V \;</math>. Значение <math>\alpha \;</math> называется [[невязка|невязкой]] аппроксимации.




4551

правка