Аноним

Мобильные агенты и исследования с их помощью: различия между версиями

Материал из WEGA
Строка 26: Строка 26:


== Основные результаты ==
== Основные результаты ==
Считается, что Клод Шеннон [ ] первым предложил алгоритм на базе конечных автоматов для исследования произвольного лабиринта (размером 5 x 5 квадратов) методом проб и ошибок. Задачи об исследованиях с помощью мобильных агентов широко изучались в научной литературе; полезное историческое введение можно найти в работе Фрейньо и др. [11].
Считается, что Клод Шеннон [17] первым предложил алгоритм на базе конечных автоматов для исследования произвольного лабиринта (размером 5 x 5 квадратов) методом проб и ошибок. Задачи об исследованиях с помощью мобильных агентов широко изучались в научной литературе; полезное историческое введение можно найти в работе Фрейньо и др. [11].




'''Исследование в графах общего вида'''
'''Исследование в графах общего вида'''


Сеть моделируется в виде графа, агент может перемещаться от вершины к вершине только по ребрам графа. Графовая формулировка задачи может задаваться двумя разными способами. В работе Денга и Пападимитриу [ ] агент исследует сильно связные ориентированные графы, перемещаясь только в направлении от начала к концу каждого ребра, но не наоборот. В любой момент времени у агента имеется карта всех посещенных вершин и ребер, и он способен распознать их, если попадет в них вновь. Алгоритм минимизирует отношение общего количества посещенных ребер к оптимальному количеству обходов, имеющему место в случае, если граф известен агенту. Панет и Пельц [ ] исследовали неориентированный граф, в котором агенты могли обходить ребра в обоих направлениях. В графовой формулировке задачи нередко требуется, чтобы помимо исследования агент строил карту графа, т.е. выводил его изоморфную копию. Исследование изоморфных графов, предполагающих наличие меток, выполнили Альберс и Хенцингер [ ], а также Денг и Пападимитриу [8]. В работе Панета и Пельца [ ] был представлен алгоритм исследования с временем работы e + O(n), где n – количество вершин, а e – количество связей. Фрейньо и др. [ ] изучали требования к памяти при исследовании неизвестных графов (неизвестного размера) с непомеченными вершинами и локально помеченными ребрами при каждой вершине. Для исследования всех графов диаметра D с максимальной степенью d мобильному агенту необходимо Q(D\ogd) бит памяти в случае, если исследование ограничивается планарными графами. Некоторые исследователи также выполняют изучение анонимных графов, в которых агентам позволяется поднимать и бросать камни. Например, Бендер и др. [ ] показали, что для исследования достаточно одного камня, если агенту известна верхняя граница размера графа, в противном случае необходимо и достаточно O(log log n) камней.
Сеть моделируется в виде графа, агент может перемещаться от вершины к вершине только по ребрам графа. Графовая формулировка задачи может задаваться двумя разными способами. В работе Денга и Пападимитриу [8] агент исследует сильно связные ориентированные графы, перемещаясь только в направлении от начала к концу каждого ребра, но не наоборот. В любой момент времени у агента имеется карта всех посещенных вершин и ребер, и он способен распознать их, если попадет в них вновь. Алгоритм минимизирует отношение общего количества посещенных ребер к оптимальному количеству обходов, имеющему место в случае, если граф известен агенту. Панет и Пельц [15] исследовали неориентированный граф, в котором агенты могли обходить ребра в обоих направлениях. В графовой формулировке задачи нередко требуется, чтобы помимо исследования агент строил карту графа, т.е. выводил его изоморфную копию. Исследование изоморфных графов, предполагающих наличие меток, выполнили Альберс и Хенцингер [1], а также Денг и Пападимитриу [8]. В работе Панета и Пельца [15] был представлен алгоритм исследования с временем работы e + O(n), где n – количество вершин, а e – количество связей. Фрейньо и др. [11] изучали требования к памяти при исследовании неизвестных графов (неизвестного размера) с непомеченными вершинами и локально помеченными ребрами при каждой вершине. Для исследования всех графов диаметра D с максимальной степенью d мобильному агенту необходимо Q(D\ogd) бит памяти в случае, если исследование ограничивается планарными графами. Некоторые исследователи также выполняют изучение анонимных графов, в которых агентам позволяется поднимать и бросать камни. Например, Бендер и др. [4] показали, что для исследования достаточно одного камня, если агенту известна верхняя граница размера графа, в противном случае необходимо и достаточно <math>\Theta(log \; log \; n)</math> камней.




'''Исследование на деревьях'''
'''Исследование на деревьях'''


В этой формулировке предполагается, что агент может различать порты в вершине (локально), однако не предусматривается глобальной ориентации ребер и не имеется маркеров. Процесс исследования останавливается, когда мобильный агент обойдет все ребра и остановится на некоторой вершине. Если исследование должно возвращать значение, мобильный агент должен обойти все ребра и остановиться в начальной вершине. Если выполняется бессрочное исследование, мобильный агент должен обойти все ребра дерева, но не обязательно должен остановиться. Верхняя и нижняя границы памяти исследовательских алгоритмов, проанализированные Диксом и др. [ ], представлены в таблице. Они зависят от знаний, которыми обладает мобильный агент. Здесь n – количество вершин дерева, N > n – верхняя граница, известная мобильному агенту, а d – максимальная степень вершины дерева.
В этой формулировке предполагается, что агент может различать порты в вершине (локально), однако не предусматривается глобальной ориентации ребер и не имеется маркеров. Процесс ''исследования с остановкой'' завершается, когда мобильный агент обойдет все ребра и остановится на некоторой вершине. При ''исследовании с возвращением значения'' мобильный агент должен обойти все ребра и остановиться в начальной вершине. Если выполняется ''бессрочное исследование'', мобильный агент должен обойти все ребра дерева, но не обязательно должен остановиться. Верхняя и нижняя границы памяти исследовательских алгоритмов, проанализированные Диксом и др. [9], представлены в таблице. Они зависят от знаний, которыми обладает мобильный агент. Здесь n – количество вершин дерева, <math>N \ge n \;</math> – верхняя граница, известная мобильному агенту, а d – максимальная степень вершины дерева.




Строка 62: Строка 62:




Исследование в геометрической формулировке с неизвестными плоскими и выпуклыми препятствиями осуществили Блюм и др. [5]. Они сравнивали расстояние, пройденное агентом (или роботом), с длиной кратчайшего пути, свободного от препятствий, в конкретной ситуации и описывали и анализировали стратегии деятельности робота, минимизировавшие это соотношение для различных типов ситуаций. Исследованию в более общей формулировке с препятствиями в виде полигонов и прямоугольников посвящены работы Денга и др. [7] и Бар-Али и др. [ ], соответственно. Для исследования беспроводных сетей важна формулировка задачи, в которой вершины сети знают о своем местоположении. Для такого случая Кранакис и др. [12] предложили эффективные алгоритмы навигации, а именно маршрутизацию по циркулю и маршрутизацию по грани, которые гарантируют получение результата в графах Делоне и в произвольных планарных геометрических графах, соответственно, используя только локальную информацию.
Исследование в геометрической формулировке с неизвестными плоскими и выпуклыми препятствиями осуществили Блюм и др. [5]. Они сравнивали расстояние, пройденное агентом (или роботом), с длиной кратчайшего пути, свободного от препятствий, в конкретной ситуации и описывали и анализировали стратегии деятельности робота, минимизировавшие это соотношение для различных типов ситуаций. Исследованию в более общей формулировке с препятствиями в виде полигонов и прямоугольников посвящены работы Денга и др. [7] и Бар-Али и др. [3], соответственно. Для исследования беспроводных сетей важна формулировка задачи, в которой вершины сети знают о своем местоположении. Для такого случая Кранакис и др. [12] предложили эффективные алгоритмы навигации, а именно маршрутизацию по циркулю и маршрутизацию по грани, которые гарантируют получение результата в графах Делоне и в произвольных планарных геометрических графах, соответственно, используя только локальную информацию.




'''Рандеву'''
'''Рандеву'''


Задача поиска рандеву отличается от задачи исследования в том, что она рассматривает два поисковых инструмента, расположенных в разных вершинах графа, и стремится минимизировать время, необходимое для их встречи (рандеву) в одной вершине. В любое заданное время мобильные агенты занимают вершину графа и могут оставаться в ней либо перемещаться от вершины к вершине. Нашей задачей является минимизация времени, необходимого для рандеву. Естественным расширением задачи является исследование мобильных систем с несколькими агентами. Говоря в более общем контексте, пусть даны конкретная модель агентов и модель сети; мы говорим, что множество агентов, произвольным образом распределенных по вершинам сети, встречаются (организуют рандеву), если при выполнении своих программ по прошествии некоторого конечного времени все они занимают одну и ту же вершину сети в одно и то же время. Нас особо интересует высокосимметричный случай с анонимными агентами в анонимной сети, простейшим вариантом которого является случай с двумя агентами, стремящимися организовать рандеву в кольцевой сети. В частности, в модели, изучавшейся Савчуком [ ], агенты не могут различать вершины, вычисление выполняется посредством синхронных шагов, а ребра при каждой вершине имеют последовательную ориентацию. В таблице 2 приведены соотношения времени и памяти, известные для шести алгоритмов (см. Кранакис и др. [13], а также Флоччини и др. [ ]) в случае, когда k мобильных агентов используют неразличимые камни (по одному на каждого мобильного агента) для обозначения своей позиции в кольце, состоящем из n вершин.
Задача поиска рандеву отличается от задачи исследования в том, что она рассматривает два поисковых инструмента, расположенных в разных вершинах графа, и стремится минимизировать время, необходимое для их встречи (рандеву) в одной вершине. В любое заданное время мобильные агенты занимают вершину графа и могут оставаться в ней либо перемещаться от вершины к вершине. Нашей задачей является минимизация времени, необходимого для рандеву. Естественным расширением задачи является исследование мобильных систем с несколькими агентами. Говоря в более общем контексте, пусть даны конкретная модель агентов и модель сети; мы говорим, что множество агентов, произвольным образом распределенных по вершинам сети, встречаются (организуют рандеву), если при выполнении своих программ по прошествии некоторого конечного времени все они занимают одну и ту же вершину сети в одно и то же время. Нас особо интересует высокосимметричный случай с анонимными агентами в анонимной сети, простейшим вариантом которого является случай с двумя агентами, стремящимися организовать рандеву в кольцевой сети. В частности, в модели, изучавшейся Савчуком [ ], агенты не могут различать вершины, вычисление выполняется посредством синхронных шагов, а ребра при каждой вершине имеют последовательную ориентацию. В таблице 2 приведены соотношения времени и памяти, известные для шести алгоритмов (см. Кранакис и др. [13], а также Флоччини и др. [10]) в случае, когда k мобильных агентов используют неразличимые камни (по одному на каждого мобильного агента) для обозначения своей позиции в кольце, состоящем из n вершин.




Строка 93: Строка 93:




Кранакис и др. [ ] продемонстрировали разительное отличие в особенностях вычислений рандеву в ориентированных, синхронных торах n x n при условии, что мобильные агенты имеют больше неразличимых маркеров. Они показали, что два агента с константным набором неперемещаемых маркеров (либо имеющие каждый по одному перемещаемому маркеру) не могут организовать рандеву, если имеют o(log n) памяти; они могут устроить рандеву с обнаружением, если имеют один неперемещаемый маркер и O(log n) памяти. Напротив, если каждый из двух агентов имеет два перемещаемых маркера, то организовать рандеву (соответственно, рандеву с обнаружением) возможно на торе при наличии константного объема памяти. Наконец, два агента, имеющие по три перемещаемых маркера и константный объем памяти, могут организовать рандеву с обнаружением на торе. Если отбросить условие синхронности, задача организации рандеву становится исключительно сложной. Имея заданное начальное положение агентов в графе, Де Марко и др. [ ] измеряли эффективность алгоритма организации рандеву по количеству ребер, пройденных обоими агентами до собственно рандеву. Если вначале агенты располагаются на расстоянии D друг от друга на бесконечной прямой, стоимость алгоритма организации рандеву составляет O(D|Lmin|2), если D известно, и O((D + |Lmax|)3), если D неизвестно, где |Lmin| и |Lmax| – длины самой короткой и самой длинной меток агентов, соответственно. Этот результат верен и для случая кольца неизвестного размера. Авторы также предложили оптимальный алгоритм стоимостью O(n|Lmin|), если размер n кольца известен, и O(n|Lmax|) – если он неизвестен. Для произвольных графов они показали, что рандеву возможно в случае, если верхняя граница размера графа известна, и предложили оптимальный алгоритм стоимостью O(D|Lmin|), если топология графа и начальные положения известны агентам.
Кранакис и др. [ ] продемонстрировали разительное отличие в особенностях вычислений рандеву в ориентированных, синхронных торах n x n при условии, что мобильные агенты имеют больше неразличимых маркеров. Они показали, что два агента с константным набором неперемещаемых маркеров (либо имеющие каждый по одному перемещаемому маркеру) не могут организовать рандеву, если имеют o(log n) памяти; они могут устроить рандеву с обнаружением, если имеют один неперемещаемый маркер и O(log n) памяти. Напротив, если каждый из двух агентов имеет два перемещаемых маркера, то организовать рандеву (соответственно, рандеву с обнаружением) возможно на торе при наличии константного объема памяти. Наконец, два агента, имеющие по три перемещаемых маркера и константный объем памяти, могут организовать рандеву с обнаружением на торе. Если отбросить условие синхронности, задача организации рандеву становится исключительно сложной. Имея заданное начальное положение агентов в графе, Де Марко и др. [6] измеряли эффективность алгоритма организации рандеву по количеству ребер, пройденных обоими агентами до собственно рандеву. Если вначале агенты располагаются на расстоянии D друг от друга на бесконечной прямой, стоимость алгоритма организации рандеву составляет O(D|Lmin|2), если D известно, и O((D + |Lmax|)3), если D неизвестно, где |Lmin| и |Lmax| – длины самой короткой и самой длинной меток агентов, соответственно. Этот результат верен и для случая кольца неизвестного размера. Авторы также предложили оптимальный алгоритм стоимостью O(n|Lmin|), если размер n кольца известен, и O(n|Lmax|) – если он неизвестен. Для произвольных графов они показали, что рандеву возможно в случае, если верхняя граница размера графа известна, и предложили оптимальный алгоритм стоимостью O(D|Lmin|), если топология графа и начальные положения известны агентам.


== Применение ==
== Применение ==
4551

правка