Аноним

Минимальные k-связные геометрические сети: различия между версиями

Материал из WEGA
м
Строка 120: Строка 120:


== Открытые вопросы ==
== Открытые вопросы ==
Вышеприведенные результаты позволяют создавать эффективные алгоритмы только для малых значений требования связности k; время выполнения является полиномиальным только для значения k, не превышающего (log log n) для определенной положительной константы c < 1. Любопытно было бы узнать, можно ли получить алгоритм схемы аппроксимации с полиномиальным временем выполнения для больших значений k.
Вышеприведенные результаты позволяют создавать эффективные алгоритмы только для малых значений требования связности k; время выполнения является полиномиальным только для значения k, не превышающего <math>(log \; log \; n)^c</math> для определенной положительной константы c < 1. Любопытно было бы узнать, можно ли получить алгоритм схемы аппроксимации с полиномиальным временем выполнения для больших значений k.




4551

правка