Аноним

Минимальные k-связные геометрические сети: различия между версиями

Материал из WEGA
м
Строка 113: Строка 113:




Теорема 9 ([7]). Пусть d – любое целое число, <math>d \ge 2 \;</math>, а <math>\varepsilon \;</math> – любое положительное вещественное число. Пусть S – множество из n точек в пространстве <math>\mathbb{R}^d \;</math>. Существует рандомизированный алгоритм, который за время <math>n \cdot (log \; n)^{(kd / \varepsilon)^{O(d)}} \cdot 2^{2^{(kd / \varepsilon)^{O(d)}}}</math> с вероятностью не менее 0,99 находит <math>(1 + \varepsilon) \;</math>-аппроксимацию геометрической сети с повышенной живучестью с rv 2 f0; 1; 2g для любого v 2 V. Этот алгоритм может быть дерандомизирован за полиномиальное время.
Теорема 9 ([7]). Пусть d – любое целое число, <math>d \ge 2 \;</math>, а <math>\varepsilon \;</math> – любое положительное вещественное число. Пусть S – множество из n точек в пространстве <math>\mathbb{R}^d \;</math>. Существует рандомизированный алгоритм, который за время <math>n \cdot log \; n \cdot (d / \varepsilon)^{O(d)} + n \cdot 2^{(d / \varepsilon)^{O(d^2)}} + n \cdot 2^{2^{d^{d^{O(1)}}}}</math> с вероятностью не менее 0,99 находит <math>(1 + \varepsilon) \;</math>-аппроксимацию геометрической сети с повышенной живучестью с <math>r_v \in \{ 0, 1, 2 \} \;</math> для любого <math>v \in V \;</math>. Этот алгоритм может быть дерандомизирован за полиномиальное время.


== Применение ==
== Применение ==
4551

правка