Аноним

Прямолинейное дерево Штейнера: различия между версиями

Материал из WEGA
м
Нет описания правки
Строка 11: Строка 11:


== Основные результаты ==
== Основные результаты ==
Представленный алгоритм основан на эвристике подстановки ребер, предложенной Борой и коллегами [2 ]. и работающей следующим образом. Эвристика начинает работу с имеющегося минимального остовного дерева и итеративно рассматривает возможность подключения точки (см. рис. 1) к ближайшему ребру (например, (a, b)) и удаления самого длинного ребра (b, c)) из получившейся схемы. Алгоритм использует [[остовный граф]] [17] как базовую структуру вычисления: вначале он используется для генерации минимального остовного дерева, а затем – пар «точка-ребро» для улучшения этого дерева. Подобная унификация наблюдается также при вычислении остовного дерева и самого длиного ребра для каждой пары «точка-ребро»: эти два вычисления объединяет использование алгоритма Крускала для операций на непересекающихся множествах [5] вместо алгоритма Прима.
Представленный алгоритм основан на эвристике подстановки ребер, предложенной Борой и коллегами [2] и работающей следующим образом. Эвристика начинает работу с имеющегося минимального остовного дерева и итеративно рассматривает возможность подключения точки (см. рис. 1) к ближайшему ребру (например, (a, b)) и удаления самого длинного ребра (b, c)) из получившейся схемы. Алгоритм использует [[остовный граф]] [17] как базовую структуру вычисления: вначале он используется для генерации минимального остовного дерева, а затем – пар «точка-ребро» для улучшения этого дерева. Подобная унификация наблюдается также при вычислении остовного дерева и самого длиного ребра для каждой пары «точка-ребро»: эти два вычисления объединяет использование алгоритма Крускала для операций на непересекающихся множествах [5] вместо алгоритма Прима.




Строка 30: Строка 30:




На основе вышеприведенных рассуждений создан псевдокод алгоритма, представленный на рис. 3. На начальном этапе работы алгоритма для генерации остовного графа G для заданного множества точек используется алгоритм построения прямолинейного остовного графа Чжоу и др [17]. Затем к графу применяется алгоритм Крускала для генерации минимального остовного дерева. Структура данных на основе непересекающихся множеств [ ] используется для слияния компонентов и проверки, принадлежат ли две точки к одному и тому же компоненту (первый цикл for). В процессе выполнения также генерируются бинарное дерево слияния и запросы по поводу наименьших общих предков для всех пар «точка-ребро». Здесь s, s1 и s2 представляют непересекающиеся множества, каждое из которых хранит корень компонента в бинарном дереве слияния. При каждом добавлении дуги (u, v) к T следует рассматривать любого соседа u или v, обозначим его за w, как кандидата на подключение к (u, v). Самое длиное ребро для этой пары будет наименьшим общим предком w и u либо w и v, в зависимости от того, какая точка оказывается в одном компоненте с точкой w. Добавление этого опроса производится при помощи процедуры lca_add_query. Соединение двух компонентов при помощи (u, v) также будет записано в бинарном дереве слияния при помощи процедуры lca_tree_edge. После генерации минимального остовного дерева у нас также имеются соответствующее бинарное дерево слияния и запросы по поводу наименьших общих предков. При помощи оффлайнового алгоритма Тарьяна для нахождения наименьших общих предков [ ] (представленного процедурой lca_answer_queries) можно сгенерировать все самые длинные ребра для пар. При наличии информации о самом длинном ребре для каждой пары «точка-ребро» можно решить задачу подключения точки к ребру. После этого можно осуществить подключения точек к ребрам в порядке невозрастания прироста. Подключение может быть осуществлено только в случае, если ни ребро подключения, ни ребро удаления еще не были удалены.
На основе вышеприведенных рассуждений создан псевдокод алгоритма, представленный на рис. 3. На начальном этапе работы алгоритма для генерации остовного графа G для заданного множества точек используется алгоритм построения прямолинейного остовного графа Чжоу и др [17]. Затем к графу применяется алгоритм Крускала для генерации минимального остовного дерева. Структура данных на основе непересекающихся множеств [ ] используется для слияния компонентов и проверки, принадлежат ли две точки к одному и тому же компоненту (первый цикл for). В процессе выполнения также генерируются бинарное дерево слияния и запросы по поводу наименьших общих предков для всех пар «точка-ребро». Здесь s, s1 и s2 представляют непересекающиеся множества, каждое из которых хранит корень компонента в бинарном дереве слияния. При каждом добавлении дуги (u, v) к T следует рассматривать любого соседа u или v, обозначим его за w, как кандидата на подключение к (u, v). Самое длиное ребро для этой пары будет наименьшим общим предком w и u либо w и v, в зависимости от того, какая точка оказывается в одном компоненте с точкой w. Добавление этого опроса производится при помощи процедуры lca_add_query. Соединение двух компонентов при помощи (u, v) также будет записано в бинарном дереве слияния при помощи процедуры lca_tree_edge. После генерации минимального остовного дерева у нас также имеются соответствующее бинарное дерево слияния и запросы по поводу наименьших общих предков. При помощи оффлайнового алгоритма Тарьяна для нахождения наименьших общих предков [5] (представленного процедурой lca_answer_queries) можно сгенерировать все самые длинные ребра для пар. При наличии информации о самом длинном ребре для каждой пары «точка-ребро» можно решить задачу подключения точки к ребру. После этого можно осуществить подключения точек к ребрам в порядке невозрастания прироста. Подключение может быть осуществлено только в случае, если ни ребро подключения, ни ребро удаления еще не были удалены.




Большую часть времени исполнения алгоритма занимают генерация остовного графа и сортировка ребер, требующие O(n log n) времени. Поскольку количество ребер в остовном графе составляет O(n), и алгоритм Крускала, и алгоритм Тарьяна для поиска наименьших общих предков занимают O{na{n)) времени, где a{n) – обратная функция Аккермана, растущая исключительно медленно.
Большую часть времени исполнения алгоритма занимают генерация остовного графа и сортировка ребер, требующие O(n log n) времени. Поскольку количество ребер в остовном графе составляет O(n), и алгоритм Крускала, и алгоритм Тарьяна для поиска наименьших общих предков занимают <math>O(n \alpha (n))</math> времени, где <math>\alpha (n)</math> – обратная функция Аккермана, растущая исключительно медленно.




Строка 59: Строка 59:


Рисунок 3. Алгоритм построения прямолинейного дерева Штейнера.
Рисунок 3. Алгоритм построения прямолинейного дерева Штейнера.


== Применение ==
== Применение ==
4551

правка