Аноним

Рандомизированный алгоритм нахождения минимального остовного дерева: различия между версиями

Материал из WEGA
м
Строка 22: Строка 22:
• Основной компонент алгоритма Борувки [1] – «шаг Борувки», который выбирает ребро с минимальным весом, инцидентное каждой вершине, добавляет его к минимальному остовному дереву и затем выполняет сжатие данных ребер. Этот шаг выполняется за линейное время и поддается эффективному распараллеливанию. Он стал основой для самых эффективных параллельных алгоритмов поиска минимального остовного дерева; этот подход также используется алгоритмом KKT.
• Основной компонент алгоритма Борувки [1] – «шаг Борувки», который выбирает ребро с минимальным весом, инцидентное каждой вершине, добавляет его к минимальному остовному дереву и затем выполняет сжатие данных ребер. Этот шаг выполняется за линейное время и поддается эффективному распараллеливанию. Он стал основой для самых эффективных параллельных алгоритмов поиска минимального остовного дерева; этот подход также используется алгоритмом KKT.


• Родственная и более простая задача касается верификации минимального остовного дерева. В этой задаче имеется остовное дерево T для входного графа со взвешенными ребрами и необходимо определить, является ли оно минимальным. Алгоритм, решающий эту задачу при помощи линейного количества сравнений весов ребер, бал предложен Комлошем [ ]; позднее был разработан детерминированный алгоритм с линейным временем исполнения [6] (см. также более простой алгоритм в [12]).
• Родственная и более простая задача касается верификации минимального остовного дерева. В этой задаче имеется остовное дерево T для входного графа со взвешенными ребрами и необходимо определить, является ли оно минимальным. Алгоритм, решающий эту задачу при помощи линейного количества сравнений весов ребер, бал предложен Комлошем [13]; позднее был разработан детерминированный алгоритм с линейным временем исполнения [6] (см. также более простой алгоритм в [12]).
 


== Основные результаты ==
== Основные результаты ==
4511

правок