Аноним

Радиораскраска в планарных графах: различия между версиями

Материал из WEGA
Строка 10: Строка 10:
Дано: граф G(V, E).
Дано: граф G(V, E).


Требуется: найти функцию <math>\phi : V \mapsto \{ 1, ..., \infty \} \;</math>, называемую ''k-раскраской графа'' G, такую, что <math>\forall u, v \in V, x \in \{0, 1, ..., k \} \;</math>: если <math>d(u, v) \ge k - x + 1 \;</math>, то <math>| \phi(u) - \phi(v)| = x \;</math>.
Требуется: найти функцию <math>\phi : V \to \{ 1, ..., \infty \} \;</math>, называемую ''k-раскраской графа'' G, такую, что <math>\forall u, v \in V, x \in \{0, 1, ..., k \} \;</math>: если <math>d(u, v) \ge k - x + 1 \;</math>, то <math>| \phi(u) - \phi(v)| = x \;</math>.


Цель: Пусть <math>| \phi (V) | = \lambda_{ \phi } \;</math>. Тогда <math>\lambda_{ \phi } \;</math> - ''количество цветов'', фактически используемых <math>\phi \;</math> (обычно называемое ''порядком'' G относительно <math>\phi \;</math>). Количество <math>v_{ \phi } = max_{v \in V } \phi (v) - min_{ u \in V } \phi (u) + 1 \;</math> обычно называется ''диапазоном'' графа G относительно <math>\phi \;</math>. Функция <math>\phi \;</math> удовлетворяет одной из следующих целей:
Цель: Пусть <math>| \phi (V) | = \lambda_{ \phi } \;</math>. Тогда <math>\lambda_{ \phi } \;</math> - ''количество цветов'', фактически используемых <math>\phi \;</math> (обычно называемое ''порядком'' G относительно <math>\phi \;</math>). Количество <math>v_{ \phi } = max_{v \in V } \phi (v) - min_{ u \in V } \phi (u) + 1 \;</math> обычно называется ''диапазоном'' графа G относительно <math>\phi \;</math>. Функция <math>\phi \;</math> удовлетворяет одной из следующих целей:
Строка 29: Строка 29:
Дано: граф G(V, E).
Дано: граф G(V, E).


Требуется: найти функцию ф : V ! N*, такую, что \Ф(и) - Ф(у)|   >   2, если d(u, v) = 1, и \Ф(u) - Ф(v)j > 1, если d(u, v) = 2.
Требуется: найти функцию <math>\Phi : V \to N^* \;</math>, такую, что <math>| \Phi (u) - \Phi (v) | \ge 2 \;</math>, если d(u, v) = 1, и <math>| \Phi (u) - \Phi (v) | \ge 1 \;</math>, если d(u, v) = 2.


Цель: наименьшее возможное число (порядок), необходимое для радиораскраски G, обозначим как Xorder(G). Наименьшее возможное число maxv2V Ф(у) — minu2V Ф(и) + 1 (диапазон), необходимое для радиораскраски G, обозначим как Xspan(G). Функция Ф удовлетворяет одному из следующих условий:
Цель: наименьшее возможное число (порядок), необходимое для радиораскраски G, обозначим как Xorder(G). Наименьшее возможное число maxv2V Ф(у) — minu2V Ф(и) + 1 (диапазон), необходимое для радиораскраски G, обозначим как Xspan(G). Функция Ф удовлетворяет одному из следующих условий:
4551

правка