Аноним

Остовные деревья с низким растяжением: различия между версиями

Материал из WEGA
м
Строка 44: Строка 44:




Применяя остовные деревья с низким растяжением, предложенные в [9], можно уменьшить время решения таких систем линейных уравнений до <math>m log^{O(1)} n log(1 / \epsilon) \;</math> и до <math>O( n(log \; n \; log \; log \; n ) log (1 / \epsilon)) </math> в случае, если системы планарны. Используя недавно разработанную редукцию Бомана, Хендриксона и Вавасиса [6], можно получить алгоритм решения систем линейных уравнений, возникающих при применении метода конечных элементов для решения двумерных эллиптических уравнений в частных производных, с временем исполнения <math>O(n(log \; n \; log \; log \; n)^2 log(l / \epsilon))</math>.
Применяя остовные деревья с низким растяжением, предложенные в [9], можно уменьшить время решения таких систем линейных уравнений до <math>m log^{O(1)} n log(1 / \epsilon) \;</math>, а в случае, если системы планарны – до <math>O( n(log \; n \; log \; log \; n ) log (1 / \epsilon)) </math>. Используя недавно разработанную редукцию Бомана, Хендриксона и Вавасиса [6], можно получить алгоритм решения систем линейных уравнений, возникающих при применении метода конечных элементов для решения двумерных эллиптических уравнений в частных производных, с временем исполнения <math>O(n(log \; n \; log \; log \; n)^2 log(l / \epsilon))</math>.




4551

правка