Аноним

Полностью динамическая проверка на планарность: различия между версиями

Материал из WEGA
м
Строка 9: Строка 9:


== Основные результаты ==
== Основные результаты ==
Эппстайн и коллеги [3] предложили способ применения техники разрежения [ ] к семействам графов, уже являющихся разреженными – таким, как планарные графы.
Эппстайн и коллеги [3] предложили способ применения техники разрежения [2] к семействам графов, уже являющихся разреженными – таким, как планарные графы.
Новые идеи, примененные в данном случае, заключаются в следующем. Понятие сертификата может быть расширено на определение графов, в которых подмножество вершин помечено как интересные; подобные сжатые сертификаты могут уменьшить размер графа за счет удаления неинтересных вершин. Используя это понятие, можно определить тип разрежения на основе разделителей – небольших множеств вершин, удаление которых разбивает граф на компоненты примерно равного размера. Рекурсивный поиск разделителей в этих компонентах дает в итоге дерево разделителей, которое может также использоваться как дерево разреженности; интересными вершинами для каждого сертификата будут вершины, использованные в разделителях на более высоких уровнях дерева. Вводится понятие сбалансированного дерева разделителей, которое также равномерно распределяет интересные вершины по дереву: такое дерево можно вычислить за линейное время и динамически поддерживать его. Используя эту технику, можно получить следующие результаты.
Новые идеи, примененные в данном случае, заключаются в следующем. Понятие сертификата может быть расширено на определение графов, в которых подмножество вершин помечено как интересные; подобные сжатые сертификаты могут уменьшить размер графа за счет удаления неинтересных вершин. Используя это понятие, можно определить тип разрежения на основе разделителей – небольших множеств вершин, удаление которых разбивает граф на компоненты примерно равного размера. Рекурсивный поиск разделителей в этих компонентах дает в итоге дерево разделителей, которое может также использоваться как дерево разреженности; интересными вершинами для каждого сертификата будут вершины, использованные в разделителях на более высоких уровнях дерева. Вводится понятие сбалансированного дерева разделителей, которое также равномерно распределяет интересные вершины по дереву: такое дерево можно вычислить за линейное время и динамически поддерживать его. Используя эту технику, можно получить следующие результаты.


4551

правка