Аноним

Евклидова задача коммивояжера: различия между версиями

Материал из WEGA
Строка 10: Строка 10:
Евклидова задача коммивояжера заключается в следующем: для заданного множества S из n точек в евклидовом пространстве <math>\mathbb{R}\ ^d</math> найти путь минимальной длины, проходящий через каждую точку ровно один раз.
Евклидова задача коммивояжера заключается в следующем: для заданного множества S из n точек в евклидовом пространстве <math>\mathbb{R}\ ^d</math> найти путь минимальной длины, проходящий через каждую точку ровно один раз.


Стоимость <math>\delta\ (x, y)</math> дуги, соединяющей пару точек x;y2Rd, равна евклидовому расстоянию между точками x и y. Иначе говоря, S(x, y) = P di=1(xi ~~ i)2, где x = (x 1 ; :. , xd) и y = (y 1,.: ; y d). В более общем виде расстояние можно определить с использованием других норм – таких как lp-нормы для любого p > l,8(x,y) = Pid=1(xi ~ yi)p    .
Стоимость <math>\delta\ (x, y)</math> дуги, соединяющей пару точек <math>x, y \in \mathbb{R}\ ^d</math>, равна евклидовому расстоянию между точками x и y. Иначе говоря, <math>\delta\ (x, y) = \sqrt{\sum_{i=1}^d (x_i - y_i)^2} </math>, где x = (x 1 ; :. , xd) и y = (y 1,.: ; y d). В более общем виде расстояние можно определить с использованием других норм – таких как lp-нормы для любого p > l,8(x,y) = Pid=1(xi ~ yi)p    .
Для заданного множества S точек в евклидовом пространстве Rd, для целого d > 2, евклидов граф (сеть) представляет собой граф G = (S; E), где E – множество прямолинейных сегментов, соединяющих пары точек из S. Если все пары точек в S соединены дугами из E, то G называется полным евклидовым графом на S. Стоимость графа равна сумме стоимостей дуг графа:
Для заданного множества S точек в евклидовом пространстве Rd, для целого d > 2, евклидов граф (сеть) представляет собой граф G = (S; E), где E – множество прямолинейных сегментов, соединяющих пары точек из S. Если все пары точек в S соединены дугами из E, то G называется полным евклидовым графом на S. Стоимость графа равна сумме стоимостей дуг графа:
   
   
4551

правка