Аноним

Аппроксимационные схемы для задач с планарными графами: различия между версиями

Материал из WEGA
Нет описания правки
Строка 43: Строка 43:
== Литература ==
== Литература ==
1. Baker, B.S.: Approximation algorithms for NP-complete problems on planar graphs. J. Assoc. Comput. Mach. 41 (1), 153-180 (1994)
1. Baker, B.S.: Approximation algorithms for NP-complete problems on planar graphs. J. Assoc. Comput. Mach. 41 (1), 153-180 (1994)
2. Borradaile, G., Kenyon-Mathieu, C., Klein, P.N.: A polynomial-time approximation scheme for Steiner tree in planar graphs. In: Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, 2007
2. Borradaile, G., Kenyon-Mathieu, C., Klein, P.N.: A polynomial-time approximation scheme for Steiner tree in planar graphs. In: Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, 2007
3. Demaine, E.D., Hajiaghayi, M.: Diameter and treewidth  in minor-closed  graph families, revisited. Algorithmica 40(3), 211-215(2004)
3. Demaine, E.D., Hajiaghayi, M.: Diameter and treewidth  in minor-closed  graph families, revisited. Algorithmica 40(3), 211-215(2004)
4. Demaine, E.D., Hajiaghayi, M.: Equivalence of local treewidth and linear local treewidth and its algorithmic applications. In: Proceedings of the 15th ACM-SIAM Symposium on Discrete Algorithms (SODA'04), January 2004, pp. 833-842
4. Demaine, E.D., Hajiaghayi, M.: Equivalence of local treewidth and linear local treewidth and its algorithmic applications. In: Proceedings of the 15th ACM-SIAM Symposium on Discrete Algorithms (SODA'04), January 2004, pp. 833-842
5. Demaine, E.D., Hajiaghayi, M.: Bidimensionality: new connections between FPT algorithms and PTASs. In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2005), Vancouver, January 2005, pp. 590-601
5. Demaine, E.D., Hajiaghayi, M.: Bidimensionality: new connections between FPT algorithms and PTASs. In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2005), Vancouver, January 2005, pp. 590-601
6. Demaine, E.D., Hajiaghayi, M., Kawarabayashi, K.-I.: Algorithmic graph minor theory: Decomposition, approximation, and coloring. In: Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science, Pittsburgh, October 2005, pp.637-646
6. Demaine, E.D., Hajiaghayi, M., Kawarabayashi, K.-I.: Algorithmic graph minor theory: Decomposition, approximation, and coloring. In: Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science, Pittsburgh, October 2005, pp.637-646
7. Demaine, E.D., Hajiaghayi, M., Mohar, B.: Approximation algorithms via contraction decomposition. In: Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, 7-9 January 2007, pp. 278-287
7. Demaine, E.D., Hajiaghayi, M., Mohar, B.: Approximation algorithms via contraction decomposition. In: Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, 7-9 January 2007, pp. 278-287
8. Demaine, E.D., Hajiaghayi, M., Nishimura, N., Ragde, P., Thilikos, D.M.: Approximation algorithms for classes of graphs excluding single-crossing graphs as minors. J. Comput. Syst. Sci. 69(2),166-195(2004)
8. Demaine, E.D., Hajiaghayi, M., Nishimura, N., Ragde, P., Thilikos, D.M.: Approximation algorithms for classes of graphs excluding single-crossing graphs as minors. J. Comput. Syst. Sci. 69(2),166-195(2004)
9. DeVos, M., Ding, G., Oporowski, B., Sanders, D.P., Reed, B., Seymour, P., Vertigan, D.: Excluding any graph as a minor allows a low tree-width 2-coloring. J. Comb. Theory Ser. B 91(1), 25-41 (2004)
9. DeVos, M., Ding, G., Oporowski, B., Sanders, D.P., Reed, B., Seymour, P., Vertigan, D.: Excluding any graph as a minor allows a low tree-width 2-coloring. J. Comb. Theory Ser. B 91(1), 25-41 (2004)
10. Eppstein, D.: Diameter and treewidth in minor-closed graph families. Algorithmica 27(3-4), 275-291 (2000)
10. Eppstein, D.: Diameter and treewidth in minor-closed graph families. Algorithmica 27(3-4), 275-291 (2000)
11. Frick, M., Grohe, M.: Deciding first-order properties of locally tree-decomposable structures. J. ACM 48(6), 1184-1206 (2001)
11. Frick, M., Grohe, M.: Deciding first-order properties of locally tree-decomposable structures. J. ACM 48(6), 1184-1206 (2001)
12. Grohe, M.: Local tree-width, excluded minors, and approximation algorithms. Combinatorica 23(4), 613-632 (2003)
12. Grohe, M.: Local tree-width, excluded minors, and approximation algorithms. Combinatorica 23(4), 613-632 (2003)
13. Klein, P.N.: A linear-time approximation scheme for TSP for planar weighted graphs. In: Proceedings of the 46th IEEE Symposium on Foundations of Computer Science, 2005, pp. 146-155
13. Klein, P.N.: A linear-time approximation scheme for TSP for planar weighted graphs. In: Proceedings of the 46th IEEE Symposium on Foundations of Computer Science, 2005, pp. 146-155
14. Klein, P.N.: A subset spanner for planar graphs, with application to subset TSP. In: Proceedings of the 38th ACM Symposium on Theory of Computing, 2006, pp. 749-756
14. Klein, P.N.: A subset spanner for planar graphs, with application to subset TSP. In: Proceedings of the 38th ACM Symposium on Theory of Computing, 2006, pp. 749-756
15. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. Appl. Math. 36(2), 177-189 (1979)
15. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. Appl. Math. 36(2), 177-189 (1979)
16. Lipton, R.J., Tarjan, R.E.: Applications of a planar separator the orem. SIAM J. Comput. 9(3), 615-627 (1980)
16. Lipton, R.J., Tarjan, R.E.: Applications of a planar separator the orem. SIAM J. Comput. 9(3), 615-627 (1980)
4551

правка