4501
правка
Irina (обсуждение | вклад) Нет описания правки |
Irina (обсуждение | вклад) Нет описания правки |
||
Строка 22: | Строка 22: | ||
Пусть T – дерево, согласно вышеприведенному определению. Пусть даны текущая конфигурация сервера S = {<math>s_{1}</math>, ..., <math>s_{k}</math>}, где <math>s_{j}</math> обозначает местоположение сервера j, и точка запроса r; алгоритм выполняет перемещение нескольких серверов, один из которых окажется в результате в точке r. Для двух точек x, y <math>\in </math> T, обозначим через [x, y] уникальный путь из x в у в дереве T. Сервер j называется ''активным'', если не существует другого сервера в [<math>s_{j}</math>, r] – {<math>s_{j}</math>}, и j является сервером с минимальным индексом, расположенным в s<math>_{j}</math> (последнее условие необходимо только для разрыва связей). | Пусть T – дерево, согласно вышеприведенному определению. Пусть даны текущая конфигурация сервера S = {<math>s_{1}</math>, ..., <math>s_{k}</math>}, где <math>s_{j}</math> обозначает местоположение сервера j, и точка запроса r; алгоритм выполняет перемещение нескольких серверов, один из которых окажется в результате в точке r. Для двух точек x, y <math>\in </math> T, обозначим через [x, y] уникальный путь из x в у в дереве T. Сервер j называется ''активным'', если не существует другого сервера в [<math>s_{j}</math>, r] – {<math>s_{j}</math>}, и j является сервером с минимальным индексом, расположенным в s<math>_{j}</math> (последнее условие необходимо только для разрыва связей). | ||
Алгоритм DC-TREE | '''Алгоритм DC-TREE''' | ||
По запросу r алгоритм перемещает все активные серверы, непрерывно и с одинаковой скоростью, в направлении r, пока один из серверов не достигнет запроса. Отметим, что в этом процессе некоторые серверы могут стать неактивными; в таком случае они останавливаются. Очевидно, что быстрее других до точки r доберется тот сервер, который был ближе всего к r в момент выдачи запроса r. На иллюстрации представлена работа алгоритма DC-TREE по запросу r. | По запросу r алгоритм перемещает все активные серверы, непрерывно и с одинаковой скоростью, в направлении r, пока один из серверов не достигнет запроса. Отметим, что в этом процессе некоторые серверы могут стать неактивными; в таком случае они останавливаются. Очевидно, что быстрее других до точки r доберется тот сервер, который был ближе всего к r в момент выдачи запроса r. На иллюстрации представлена работа алгоритма DC-TREE по запросу r. | ||
правка