Аноним

Adjoint digraph: различия между версиями

Материал из WEGA
нет описания правки
(Создана новая страница размером '''Adjoint digraph''' --- сопряженный орграф. The ''' adjoint digraph''' is defined as a graph, that is, the one whose ...)
 
Нет описания правки
 
Строка 1: Строка 1:
'''Adjoint digraph''' --- сопряженный орграф.  
'''Adjoint digraph''' — ''[[сопряженный орграф]].''


The ''' adjoint digraph''' is defined as a graph, that is, the one whose arcs
The '''adjoint digraph''' is defined as a [[graph, undirected graph, nonoriented graph|graph]], that is, the one whose [[arc|arcs]]
are exactly the converses for those of <math>G</math>. The ''adjacency operator'' <math>A(G^{\ast})</math> of <math>G^{\ast}</math> is the adjoint operator
are exactly the converses for those of <math>\,G</math>. The ''[[adjacency operator]]'' <math>A(G^{\ast})</math> of <math>G^{\ast}</math> is the adjoint operator
<math>A(G)^{\ast}</math>. Though <math>G^{\ast}</math> is called the ''converse'' digraph
<math>A(G)^{\ast}</math>. Though <math>G^{\ast}</math> is called the [[converse digraph|''converse'' digraph]]
of <math>G</math> among graph theorists, the term '''adjoint''' is often used in
of <math>\,G</math> among graph theorists, the term '''adjoint''' is often used in
this sense.
this sense.


The '''coadjoint graphs''' are graphs <math>G</math> and <math>G^{\ast}</math>
The '''[[coadjoint graphs]]''' are graphs <math>\,G</math> and <math>G^{\ast}</math>
satisfying <math>G \cong G^{\ast}</math>.
satisfying <math>G \cong G^{\ast}</math>.