Cocomparability ordering
Материал из WEGA
Cocomparability ordering --- косравнимое упорядочение.
A graph [math]\displaystyle{ G }[/math] has a cocomparability ordering if there exists a linear order [math]\displaystyle{ \lt }[/math] on the set of its vertices such that for every choice of vertices [math]\displaystyle{ u, v, w }[/math] the following property holds
[math]\displaystyle{ u \lt v \lt w \wedge (u,w) \in E \Rightarrow (u,v) \in E \vee (v,w) \in E. }[/math]
A graph is a cocomparability graph if it admits a cocomparability ordering.