Automorphism

Материал из WEGA
Версия от 13:44, 17 февраля 2011; Glk (обсуждение | вклад) (Новая страница: «'''Automorphism''' --- автоморфизм (ор)графа. '''1.''' For an undirected graph, see ''Isomorphic graphs''. '''2.''' For a directed graph, '''a…»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)

Automorphism --- автоморфизм (ор)графа.

1. For an undirected graph, see Isomorphic graphs.

2. For a directed graph, automorphism is a permutation [math]\displaystyle{ \alpha }[/math] of [math]\displaystyle{ V(G) }[/math] such that the number of [math]\displaystyle{ (x,y) }[/math]-edges is the same as the number of [math]\displaystyle{ (\alpha(x), \alpha(y)) }[/math]-edges [math]\displaystyle{ (x,y \in V(G)) }[/math]. We also speak of the automorphism of a graph [math]\displaystyle{ G }[/math] with colored edges. This means a permutation [math]\displaystyle{ \alpha }[/math] such that the number of [math]\displaystyle{ (x,y) }[/math]-edges is the same as the number of [math]\displaystyle{ (\alpha(x), \alpha(y)) }[/math]-edges with any given color.

The set of all automorphisms of a (di)graph forms a permutation group [math]\displaystyle{ A(G) }[/math].