Knödel graph

Материал из WEGA
Версия от 12:00, 6 июля 2017; KEV (обсуждение | вклад) (Новая страница: «'''Knödel graph''' — ''граф Кнёделя.'' The '''Knödel graph''' on <math>\,n \geq 2</math> vertices (<math>\,n</math> even) and of maximum degr…»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)

Knödel graphграф Кнёделя.

The Knödel graph on [math]\displaystyle{ \,n \geq 2 }[/math] vertices ([math]\displaystyle{ \,n }[/math] even) and of maximum degree [math]\displaystyle{ \,\Delta \geq 1 }[/math] is denoted [math]\displaystyle{ \,W_{\Delta,n} }[/math]. The vertices of [math]\displaystyle{ \,W_{\Delta,n} }[/math] are the couples [math]\displaystyle{ \,(i,j) }[/math] with [math]\displaystyle{ \,i = 1,2 }[/math] and [math]\displaystyle{ \,0 \leq j \leq \frac{n}{2} - 1 }[/math]. For every [math]\displaystyle{ \,j }[/math], [math]\displaystyle{ \,0 \leq j \leq \frac{n}{2} - 1 }[/math], there is an edge between vertex [math]\displaystyle{ \,(1,j) }[/math] and every vertex [math]\displaystyle{ \,(2,j+2^{k} - 1\pmod{\frac{n}{2}} }[/math], for [math]\displaystyle{ \,k = 0, \ldots, \Delta - 1 }[/math].

Литература

  • Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.