K-Stability

Материал из WEGA
Версия от 14:01, 28 июня 2011; Glk (обсуждение | вклад) (Новая страница: «'''<math>k</math>-Stability''' --- <math>k</math>-устойчивость. A property <math>P</math> defined on all graphs of order <math>n</math> is said to be '…»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигации Перейти к поиску

[math]\displaystyle{ k }[/math]-Stability --- [math]\displaystyle{ k }[/math]-устойчивость.

A property [math]\displaystyle{ P }[/math] defined on all graphs of order [math]\displaystyle{ n }[/math] is said to be [math]\displaystyle{ k }[/math]-stable, if for any graph of order [math]\displaystyle{ n }[/math] that does not satisfy [math]\displaystyle{ P }[/math] the fact that [math]\displaystyle{ uv }[/math] is not an edge of [math]\displaystyle{ G }[/math] and that [math]\displaystyle{ G+uv }[/math] satisfies [math]\displaystyle{ P }[/math] implies [math]\displaystyle{ d_{G}(u) + d_{G}(v) \lt k }[/math]. Every property is [math]\displaystyle{ (2n-3) }[/math]-stable and every [math]\displaystyle{ k }[/math]-stable property is [math]\displaystyle{ (k+1) }[/math]-stable. We denote by [math]\displaystyle{ s(P) }[/math] the smallest integer [math]\displaystyle{ k }[/math] such that [math]\displaystyle{ P }[/math] is [math]\displaystyle{ k }[/math]-stable and call it the stability of [math]\displaystyle{ P }[/math]. This number usually depends on [math]\displaystyle{ n }[/math] and is at most [math]\displaystyle{ 2n-3 }[/math].