Аноним

Эффективные методы множественного выравнивания последовательностей с гарантированными границами ошибок: различия между версиями

Материал из WEGA
Строка 54: Строка 54:




'''Теорема 2. Пусть A* – оптимальное множественное выравнивание заданных k строк с минимальной оценкой SP. Предложен рандомизированный алгоритм, который позволяет получить выравнивание A, такое, что <math>\frac{SP(A)}{SP(A^*)} \le 2 + \frac{1}{r - 1}</math> с вероятностью не менее 1 - (Ly-)t для любых r > 1 и p > 1.'''
'''Теорема 2. Пусть A* – оптимальное множественное выравнивание заданных k строк с минимальной оценкой SP. Предложен рандомизированный алгоритм, который позволяет получить выравнивание A, такое, что <math>\frac{SP(A)}{SP(A^*)} \le 2 + \frac{1}{r - 1}</math> с вероятностью не менее <math>1 - \Big( \frac{r - 1}{r} \Big)^p</math> для любых <math>r > 1</math> и <math>p \ge 1.</math>'''




Вместо того чтобы вычислять (2) оптимальные парные выравнивания для поиска наилучшей центральной строки, рандомизированный алгоритм рассматривает только p случайно выбранных строк в качестве кандидатов на наилучшую центральную строку, поэтому для работы этого метода необходимо вычислить только (k - 1)p оптимальных парных выравниваний за время O(kpl2), где 1 < p < k.
Вместо того чтобы вычислять <math>\binom{k}{2}</math> оптимальные парные выравнивания для поиска наилучшей центральной строки, рандомизированный алгоритм рассматривает только p случайно выбранных строк в качестве кандидатов на наилучшую центральную строку, поэтому для работы этого метода необходимо вычислить только (k - 1)p оптимальных парных выравниваний за время <math>O(kp \ell^2)</math>, где <math>1 \le p \le k</math>.




Теорема 3. Пусть T* - оптимальное эволюционное дерево из заданных k строк с минимальной оценкой TA. Предложен алгоритм аппроксимации, позволяющий получить эволюционное дерево T
'''Теорема 3. Пусть T* - оптимальное эволюционное дерево из заданных k строк с минимальной оценкой TA. Предложен алгоритм аппроксимации, позволяющий получить эволюционное дерево T, такое, что <math>\frac{TA(T)}{TA(T^*)} \le \frac2 {k - 1}{k} = 2 - \frac{2}{k}.</math>'''




В ходе работы алгоритма сначала вычисляются все Q) оптимальных парных выравниваний для построения графа, в котором каждая вершина представляет отдельную строку Xi, а вес каждого ребра (Xi ; Xj) равен D(Xi ; Xj). Этот шаг определяет общую временную сложность O(k2t2). Затем для этого графа вычисляется минимальное остовное дерево. Множественное выравнивание должно быть согласовано с оптимальными парными выравниваниями, представленными ребрами этого минимального остовного дерева.
В ходе работы алгоритма сначала вычисляются все <math>\binom{k}{2}</math> оптимальных парных выравниваний для построения графа, в котором каждая вершина представляет отдельную строку Xi, а вес каждого ребра (Xi ; Xj) равен D(Xi ; Xj). Этот шаг определяет общую временную сложность O(k2t2). Затем для этого графа вычисляется минимальное остовное дерево. Множественное выравнивание должно быть согласовано с оптимальными парными выравниваниями, представленными ребрами этого минимального остовного дерева.


== Применение ==
== Применение ==
4551

правка