Аноним

Отказоустойчивые квантовые вычисления: различия между версиями

Материал из WEGA
м
Строка 47: Строка 47:




В своей революционной работе Книлл [6] построил новую схему обеспечения отказоустойчивости, основанную на очень эффективных кодах с расстоянием ''два''. Его коды не исправляют ошибки; в схеме активно используется поствыбор в случае отсутствия обнаруженных ошибок – т. е. при обнаружении ошибки объемлющая подпрограмма перезапускается. Клнилл оценил порог на уровне выше 3% на каждый вентиль, что на порядок больше предыдущих оценок. Рейхардт доказал нижнюю границу порога <math>10^{-3}</math> для аналогичной схемы [7], отчасти поддерживая высокую оценку Книлла. Однако зависимость от поствыбора приводит к огромным накладным расходам при высокой частоте ошибок, что значительно снижает практичность. (Классическая схема отказоустойчивости, основанная на обнаружении ошибок, может не быть эффективной, но квантовая телепортация допускает, по крайней мере, теоретическую эффективность схемы Книлла). По-видимому, существует компромисс между допустимым уровнем шума и накладными расходами, необходимыми для его достижения. Существует несколько взаимодополняющих подходов к обеспечению квантовой отказоустойчивости. Для достижения максимальной эффективности целесообразно использовать любую известную структуру шума, прежде чем переходить к общим процедурам отказоустойчивости. Специализированные методы включают тщательное квантовое проектирование, методы ядерного магнитного резонанса (ЯМР), такие как динамическая развязка и композитные последовательности импульсов, а также подпространства, свободные от декогерентности. Для очень малых квантовых компьютеров такие методы могут обеспечить достаточную защиту от шума.
В своей революционной работе Книлл [6] построил новую схему обеспечения отказоустойчивости, основанную на очень эффективных кодах с расстоянием ''два''. Его коды не исправляют ошибки; в схеме активно используется поствыбор в случае отсутствия обнаруженных ошибок – т. е. при обнаружении ошибки объемлющая подпрограмма перезапускается. Клнилл оценил порог на уровне выше 3% на каждый вентиль, что на порядок больше предыдущих оценок. Рейхардт доказал нижнюю границу порога <math>10^{-3}</math> для аналогичной схемы [7], отчасти поддерживая высокую оценку Книлла. Однако зависимость от поствыбора приводит к огромным накладным расходам при высокой частоте ошибок, что значительно снижает практичность. (Классическая схема отказоустойчивости, основанная на обнаружении ошибок, может не быть эффективной, но квантовая телепортация допускает, по крайней мере, теоретическую эффективность схемы Книлла). По-видимому, существует компромисс между допустимым уровнем шума и накладными расходами, необходимыми для его достижения.
 
 
Имеется несколько взаимодополняющих подходов к обеспечению квантовой отказоустойчивости. Для достижения максимальной эффективности целесообразно использовать любую известную структуру шума, прежде чем переходить к общим процедурам обеспечения отказоустойчивости. Специализированные методы включают тщательное квантовое проектирование, методы ядерного магнитного резонанса (ЯМР), такие как динамическая развязка и композитные последовательности импульсов, а также подпространства, свободные от декогерентности. Для очень малых квантовых компьютеров такие методы могут обеспечить достаточную защиту от шума.
 
 
Не исключено, что будет спроектировано или открыто надежное по своей сути квантово-вычислительное устройство, подобное транзистору для классических вычислений, и это является целью ''топологических'' квантовых вычислений [4].
Не исключено, что будет спроектировано или открыто надежное по своей сути квантово-вычислительное устройство, подобное транзистору для классических вычислений, и это является целью ''топологических'' квантовых вычислений [4].


4446

правок