Аноним

Ресинхронизация схемы: различия между версиями

Материал из WEGA
м
Строка 49: Строка 49:




Поскольку в ограничения входят только разностные неравенства с целочисленными константными термами, решение ослабленной линейной программы (без целочисленных ограничений) даст только целочисленные решения. И более того, можно показать, что эта задача является двойственной к задаче нахождения потока с минимальной стоимостью в сети и, таким образом, имеет эффективное решение.
Поскольку в ограничения входят только разностные неравенства с целочисленными константными термами, решение ослабленной линейной программы (без целочисленных ограничений) даст только целочисленные решения. И более того, можно показать, что эта задача является двойственной к задаче нахождения сетевого потока с минимальной стоимостью и, таким образом, имеет эффективное решение.




'''Теорема 1. Целочисленная линейная программа для задачи ресинхронизации с минимальной площадью является двойственной к следующей задаче нахождения потока с минимальной стоимостью в сети:'''
'''Теорема 1. Целочисленная линейная программа для задачи ресинхронизации с минимальной площадью является двойственной к следующей задаче нахождения сетевого потока с минимальной стоимостью:'''


'''Минимизировать <math>\sum_{(u, v) \in E} w[u, v] * f[u, v] + \sum_{D[u, v] > \phi} (W[u, v] - 1) * f[u, v]</math> так, чтобы выполнялись соотношения'''
'''Минимизировать <math>\sum_{(u, v) \in E} w[u, v] * f[u, v] + \sum_{D[u, v] > \phi} (W[u, v] - 1) * f[u, v]</math> так, чтобы выполнялись соотношения'''


<math>in[v] + \sum_{(v, w) \in E \vee D[u, v] > \phi} f[v, w] = out[v] + \sum_{(u, v) \in E \; \; D[u, v] > \phi} f[u, v] \; \; \forall v \in V</math>
<math>in[v] + \sum_{(v, w) \in E \vee D[v, w] > \phi} f[v, w] = out[v] + \sum_{(u, v) \in E \; \; D[u, v] > \phi} f[u, v] \; \; \forall v \in V</math>


<math>f[u, v] \ge 0 \; \; \forall (u, v) \in E \; \; D[u, v] > \phi</math>
<math>f[u, v] \ge 0 \; \; \forall (u, v) \in E \; \; D[u, v] > \phi</math>
Строка 67: Строка 67:




Для построения потока в сети с минимальной стоимостью необходимо вначале вычислить обе матрицы, W и D. Поскольку W[u, v] – кратчайший путь из u в v относительно w, вычисление W можно выполнить при помощи алгоритма нахождения кратчайших путей между всеми парами – например, алгоритма Флойда-Уоршелла [1]. Далее, если упорядоченная пара (w[x, y], - d[x]) используется в качестве веса ребра для каждой пары <math>(x, y) \in E \;</math>, алгоритм нахождения кратчайших путей между всеми парами можно также использовать для вычисления W и D. Алгоритм будет присваивать веса при помощи покомпонентного сложения и затем сравнивать их посредством лексикографической сортировки.
Для построения сетевого потока с минимальной стоимостью необходимо вначале вычислить обе матрицы, W и D. Поскольку W[u, v] – кратчайший путь из u в v относительно w, вычисление W можно выполнить при помощи алгоритма нахождения кратчайших путей между всеми парами – например, алгоритма Флойда-Уоршелла [1]. Далее, если упорядоченная пара (w[x, y], - d[x]) используется в качестве веса ребра для каждой пары <math>(x, y) \in E \;</math>, алгоритм нахождения кратчайших путей между всеми парами можно также использовать для вычисления W и D. Алгоритм будет присваивать веса при помощи покомпонентного сложения и затем сравнивать их посредством лексикографической сортировки.




4446

правок