4501
правка
Irina (обсуждение | вклад) |
Irina (обсуждение | вклад) |
||
Строка 54: | Строка 54: | ||
'''Теорема 3 ([2]). | '''Теорема 3 ([2]).''' | ||
1. Задача <math>MCT_p \;</math> для корневых деревьев может быть решена за время <math>O(min \{ 3^p kn, 2.27^p + kn^3 \}) \;</math>. | '''1. Задача <math>MCT_p \;</math> для корневых деревьев может быть решена за время <math>O(min \{ 3^p kn, 2.27^p + kn^3 \}) \;</math>.''' | ||
2. Задача <math> | '''2. Задача <math>MCT_p \;</math> для некорневых деревьев может быть решена за время <math>O \big( (p + 1) \times min \{ 3^p kn, 2.27^p + kn^3 \} \big) \;</math>.''' | ||
Терм <math>3^p kn \;</math> возникает из-за использования алгоритма, который вначале за время O(kn) локализует множество S из трех листьев, на котором входные деревья конфликтуют, а затем рекурсивным образом вычисляет деревья максимальной совместимости | Терм <math>3^p kn \;</math> возникает из-за использования алгоритма, который вначале за время O(kn) локализует множество S из трех листьев, на котором входные деревья конфликтуют, а затем рекурсивным образом вычисляет деревья максимальной совместимости <math>T_1 \;</math>, <math>T_2 \;</math> и <math>T_3 \;</math> для каждого из трех наборов <math>\mathcal{T}_1 \;</math>, <math>\mathcal{T}_2 \;</math> и <math>\mathcal{T}_3 \;</math>, соответственно, полученных посредством удаления принадлежащего S листа из входных деревьев, и затем возвращает <math>T_i \;</math>, такое, что <math>|T_i| \;</math> максимально (для <math>i \in [1, 3] \;</math>). Терм <math>2.27^p + kn^3 \;</math> появляется из-за использования алгоритма, выполняющего редукцию MCT до 3-HITTING SET. Гийемо и Николя получили отрицательный результат при рассмотрении возможности разрешимости MCT с фиксированными параметрами для входных деревьев степени не выше D. | ||
Теорема 4 ([7]). | '''Теорема 4 ([7]).''' | ||
1. MCT является W[1]-полной относительно D. | |||
2. MCT не может быть решена за время O( | '''1. MCT является W[1]-полной относительно D.''' | ||
'''2. MCT не может быть решена за время <math>O(N^{o(2^{D/2})}) \;</math>, если только не выполняется <math>SNP \subseteq SE \;</math>, где N обозначает длину входных элементов, т.е. N = O(kn).''' | |||
Задача MCT также предполагает вариант для супердеревьев, то есть деревьев, имеющих различные, но перекрывающиеся наборы листьев. В этом варианте задача является W[2]-полной относительно top[3]. | Задача MCT также предполагает вариант для супердеревьев, то есть деревьев, имеющих различные, но перекрывающиеся наборы листьев. В этом варианте задача является W[2]-полной относительно top[3]. |
правка