Аноним

Произвольно вычерчиваемый граф: различия между версиями

Материал из WEGA
нет описания правки
Нет описания правки
Нет описания правки
 
Строка 1: Строка 1:
'''Произвольно вычерчиваемый граф''' (''[[Arbitrarily traceable graph]]'') -
'''Произвольно вычерчиваемый граф''' (''[[Arbitrarily traceable graph]]'')
[[граф]] такой, что, выйдя из [[вершина|вершины]] <math>x_{0}</math> и соблюдая лишь одно
[[граф]] такой, что, выйдя из [[вершина|вершины]] <math>\,x_{0}</math> и соблюдая лишь одно
правило --- никогда не идти по уже пройденному [[ребро|ребру]],  мы неизбежно
правило никогда не идти по уже пройденному [[ребро|ребру]],  мы неизбежно
получим [[эйлеров цикл]]. Граф произвольно вычерчиваем из <math>x_{0}</math> в том и
получим [[эйлеров цикл]]. Граф произвольно вычерчиваем из <math>\,x_{0}</math> в том и
только том случае, если [[степень вершины|степени]] всех его вершин четны и
только том случае, если [[степень вершины|степени]] всех его вершин четны и
[[цикломатическое число графа|цикломатическое число]] <math>\lambda(L \setminus x_{0})</math> [[подграф|подграфа]] <math>L
[[цикломатическое число графа|цикломатическое число]] <math>\lambda(L \setminus x_{0})</math> [[подграф|подграфа]] <math>L \setminus x_{0}</math> равно <math>\,0</math>.
\setminus x_{0}</math> равно 0.
==Литература==
==Литература==
[Зыков/69],  
* Зыков А.А. Теория конечных графов. — Новосибирск: Наука. Сиб. отд-ние, 1969.
 
[Харари]
* Харари Ф. Теория графов. —  М.: Мир, 1973.